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Objective: We examine the spatiotemporal dynamics of
neural activity and its correlates in heart rate and its variability
(HR/HRV) during a fatiguing visuospatial working memory task.

Background: The neural and physiological drivers of fa-
tigue are complex, coupled, and poorly understood. Inves-
tigations that combine the fidelity of neural indices and the field-
readiness of physiological measures can facilitate measurements
of fatigue states in operational settings.

Method: Sixteen healthy adults, balanced by sex, com-
pleted a 60-minute fatiguing visuospatial working memory task.
Changes in task performance, subjective measures of effort and
fatigue, cerebral hemodynamics, and HR/HRV were analyzed.
Peak brain activation, functional and effective connections
within relevant brain networks were contrasted against spectral
and temporal features of HR/HRV.

Results: Task performance elicited increased neural acti-
vation in regions responsible for maintaining working memory
capacity. With the onset of time-on-task effects, resource uti-
lization was seen to increase beyond task-relevant networks.
Over time, functional connections in the prefrontal cortex
were seen to weaken, with changes in the causal relationships
between key regions known to drive working memory. HR/
HRV indices were seen to closely follow activity in the pre-
frontal cortex.

Conclusion: This investigation provided a window into the
neurophysiological underpinnings of working memory under
the time-on-task effect. HR/HRV was largely shown to mirror
changes in cortical networks responsible for working memory,
therefore supporting the possibility of unobtrusive state rec-
ognition under ecologically valid conditions.

Applications: Findings here can inform the development
of a fieldable index for cognitive fatigue.

Keywords: neuroergonomics, performance, fNIRS, heart rate
variability, n-back

INTRODUCTION

The brain relies on a complex network of
resources to facilitate working memory (WM)
and associated executive functions (Owen et al.,
2005). The ability to sustain attention together
withWM capacity remain central components of
effective job performance in domains such as
emergency response, frontline medical practice,
and air-traffic control, where personnel are re-
quired to exhibit high levels of comprehension,
reasoning, and vigilance for extended periods of
time (Causse et al., 2011). In these safety-critical
systems, executive functions may be compro-
mised by fatigue due to lapses in work con-
ditions, the workload, hours on the job, or
a combination of related factors. Fatigue due to
time-on-task is known to induce additional
cognitive burden, which can impair WM and
limit our ability to manage task demands
(Möckel et al., 2015). In particular, tasks that
afford limited opportunities for individuals to
implement compensatory strategies, for exam-
ple, those with a high workload and a need for
sustained attention, are known to be most vul-
nerable to the effects of fatigue (Matthews &
Hancock, 2017). In the laboratory, typical
fatigue-WM experiments employ a battery of
tests, such as the n-back test (Hopstaken et al.,
2015a) the Sternberg task (Persson et al.,
2007), the Simon task (Möckel et al., 2015),
that provide a performance-oriented measure
of the fatigue state experienced by an in-
dividual. Indeed, studies have also considered
the use of these WM tests as the fatigue in-
duction mechanism by manipulating the time-
on-task variable (Shigihara et al., 2013). In
some cases, even shorter task durations with
high workload have elicited an operationally
significant fatigue response (Temple et al.,
2000). Therefore, there exists a complex
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mapping between the workload, motivation,
and time, among other factors, that appear to
drive the human fatigue response (Matthews &
Hancock, 2017).

Different techniques have been proposed to
estimate cognitive fatigue including objective
indices, and behavioral measures or self-reports
(Mehta et al., 2020; Mehta & Agnew, 2015). In
the field, there is a need to obtain these measures
in an unobtrusive manner, while remaining
sensitive to the overall cognitive state changes
experienced by the human. Behavioral self-
reports are known to be interruptive
(O’Donnell, 1986), place additional cognitive
demands (Garrison, 2020), and occur at time-
scales that lag the fatigue states of the individual
(Lohani et al., 2019), at which point intervention
may no longer be feasible. Objective indices on
the other hand can be prescient and, in some
instances, unobtrusive, yet there remain chal-
lenges regarding their use in the field (Mehta
et al., 2017; Zhu et al., 2017), especially under
the constraints of an emergency response setting
(Mehta et al., 2020). Therefore, there exists an
unfulfilled need for fieldable and proactive fa-
tigue estimation tools in safety-critical field
applications. A key requirement to meet this
demand is to bridge the gap between the fidelity
offered by objective neural indicators and the
fieldability of physiological indicators and self-
reports. The barriers to this goal are primarily
mechanistic, given the complex neurophysio-
logical dynamics of time-on-task fatigue,
working memory, and human attention; and the
lack of valid data sets to explore this problem at
depth.

Neuroimaging studies have studied the acti-
vation of related brain regions during different
types of WM tasks (Nee & D’Esposito, 2016;
Owens et al., 2018), the relationship between
activation and working memory load (Klaassen
et al., 2013), and the role of network measures,
such as connectivity and causality (Qi et al.,
2019; Sala-Llonch et al., 2012), to develop in-
sights around brain function and the neural
underpinnings of WM. For example, workload-
related activation differences in the prefrontal
cortex and changes in effective connectivity (Qi
et al., 2019), that is, the influence that one neural
system exerts over another (Friston, 2011),

during an n-backWM test using functional near-
infrared spectroscopy (fNIRS). The influence of
fatigue on WM and its neural correlates have
been investigated using similar tools, where
studies report the effect of time-on-task on ex-
ecutive function using complex network anal-
yses on electroencephalogram (EEG)-based
connectivity features and identified the presence
of small-world characteristics that were repre-
sentative of fatigue states (Sun et al., 2014).
Other studies have successfully utilized fNIRS
based indices to predict workload demands and
fatigue correlates when performing ecological
valid WM tasks (Dehais et al., 2018). However,
translational work that extend these observations
to physiological, unobtrusive indicators such as
heart rate and its variability (HR/HRV) remain
far and few between. In one investigation, re-
searchers found that mental fatigue led to an
increase in HR/HRV with time-on-task, and
counter to their initial hypothesis, found no
relationship to motivation-related task engage-
ment in either behavioral or physiological
measures during a fatiguing protocol (Gergelyfi
et al., 2015). They allude to an exhaustion of
neural resources or changes in cognitive control
as possible factors that drive this process;
however, more evidence is needed to support
this hypothesis.

The neurovisceral integration model (NVIM)
(Thayer & Lane, 2000) provides a framework to
juxtapose vagal activity, prefrontal cortex (PFC)
activation, and executive function, one we
speculate will help elucidate the ambiguities of
earlier findings. Vagal activity can serve as
a useful analogue to neural data while relying on
unobtrusive sensing instruments. Specifically,
the work by Thayer et al. (2009) provides evi-
dence to suggest that the primary role of the PFC
during a WM task is toward sensory inhibition,
where with increased PFC activity we expect an
increase in parasympathetic tone, and therefore
an increase in HRV. However, study designs,
and associated findings remain variable, with
conflicting observations on the relationship
between HRV indices and WM demand. For
example, in a recent study, authors extended the
NVIM to explore comparisons between neural
activity and HRV during a response inhibition
task (Condy et al., 2020), where they found that
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respiratory sinus arrythmia, a marker of vagal
activity was negatively correlated with cerebral
oxygenation at baseline—consistent with prior
observations from the NVIM (Chang et al.,
2013). However, this relationship was seen to
deviate from model expectations during active
task demands. This reasserts the need for further
exploration on task-specificity and environ-
mental demands to assess the relevance of the
NVIM framework. Addressing gaps in this
space remains critical towards the development
of robust state estimation methods free from the
practical encumbrances of current neuroimaging
tools.

To that end, the present study is centered on
understanding WM capacity under the influence
of time-on-task fatigue using neural and phys-
iological indices. We approach this problem by
employing a protracted version of a visuospatial
two-back test which demands high WM under
constant workload, and sustained attention. The
primary aim was to examine the spatiotemporal
dynamics of neural activity, and the temporal
dynamics of physiological responses during this
fatiguing visuospatial WM task. A secondary
aim was to compare neurophysiological signal
behaviors to expectations from the NVIM
framework. Together, fNIRS and HRV based
indices may enable advances toward a robust
predictive framework for recognizing fatigue-
related WM deficits in operational settings.

METHODS

Participants

Sixteen participants were recruited with amean
age of 25.12 (SD = 3.31) years. Eight among those
participants were female, all from the local student
population. For three participants, we had to in-
terrupt the experiment when they needed a break,
therefore only 13 among them (seven female)
produced unsegmented neural data compatible for
subsequent analyses. All participants were self-
reported to be right-hand dominant and provided
informed consent before the start of the protocol.
All procedures were approved by the university’s
Institutional Review Board and proceeded in
accordance with the Ethics Code of the American
Psychological Association.

Protocol

On informed consent, participants were
equipped with relevant bioinstruments and re-
sponded to questionnaires on their background
and demographics. Participants were then in-
structed to rest for 5 minutes with their eyes
closed in a seated position to capture a baseline
across all sensing instruments. They were then
introduced to the visuospatial WM task, which
included a training period, followed by the main
experiment task. The task consisted of 12
blocks, with each block lasting a duration of
5 minutes. Between blocks, participants re-
sponded to single-element questionnaires on
their perceived fatigue, effort, and discomfort on
a scale of 1–10, with “1” being “low or minimal,
” and “10” being “extreme or very high.” The
specific phrase for each question was as follows:
1. Please rate the effort you expended in per-
forming this task, 2. Please rate how fatigued
you are from performing this task, and 3. Please
rate your level of discomfort while performing
this task. The time between any two blocks did
not exceed 30s. The complete protocol is shown
in Figure 1a.

Visuospatial WM task. The experimental task
employed in this study was a visuospatial two-
back WM, consistent to the one reported in our
earlier work (Karthikeyan et al., 2021). The task
was presented on a static webpage using
a desktop computer, where participants tracked
a green circle (diameter = 20 mm) within a 3 × 3
grid (side = 130 mm), while seated comfortably
in front of the screen (diagonal ≈ 600 mm;
R240HY 23.800Wide ScreenMonitor, Acer Inc.,
Taiwan) at a distance of ≈500 mm. The circle
would appear in different sections of the grid; if
the position of the circle matched the one from
two steps prior, then the participants would
respond with a keypress. The inter-stimulus time
was 1000 ms, and the image persistence time
was 900 ms. The match probability was set to
0.6, where the interface provided a fixed, tem-
porally randomized number of match events in
each block (N = 94; see Figure 1b). Before
participants began the experiment, they could
practice the two-back task under a training
mode. The training interface provided feedback
on response correctness and response time.
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During the experiment, this feedback was
withheld from participants. The interface re-
corded every keypress or lapse event on the task
with time stamps and a response correctness flag
(hit, miss or false alarm). For subsequent dis-
cussions in this study, the performance measure
used was the overall accuracy, which is defined
as the ratio of hits + correct omissions to hits +
correct omissions + misses + false alarms.

Bioinstruments

Participants were equipped with a head cap
that housed sensor and detector probes of
a continuous wave functional near-infrared
spectroscopy (fNIRS) device (NIRSport2, NIRx
Medical Technologies LLC, USA). Cortical
hemodynamics was obtained using the fNIRS
device at 50 Hz. Near infrared spectra were
captured at two wavelengths (λ = 760 and
850 nm). There was a total of 16 infrared (IR)
sources and 16 IR detectors that characterized
blood flow in the brain across 46 channels.
These channels were originally focused on 11
regions: anterior prefrontal cortex (aPFC), dor-
somedial PFC (mdPFC), right dorsolateral PFC
(r-dlPFC), left dorsolateral PFC (l-dlPFC), in-
termediate frontal cortex, right Broca’s area, left
Broca’s area, premotor cortex (PMC), supple-
mentary motor area (SMA), secondary and
tertiary visual cortex (V2-V3), and the primary
visual cortex (V1; see complete probe-map in
Figure 1c). For the statistical investigations and

results reported in this study, we focus on
a subset of those regions, namely, l- and r-
dlPFC, mdPFC, aPFC, SMA/PMC and the vi-
sual cortices (V; aggregating both V1 and V2-
V3 regions as one). In addition to the fNIRS
device, participants were instrumented with
a chest-worn electrocardiography (ECG) device
(Actiheart 4, CamNTech, Inc., UK) that was
used to collect ECG data at 128 Hz. Electrodes
were placed at the base of the sternum and just
beneath the left pectoralis minor muscle.

Signal Preprocessing and
Feature Extraction

fNIRS. Light intensity recorded from the
fNIRS device was first converted to optical
density. The optical density signal was low-pass
filtered at 3 Hz to attenuate high frequency
noise. Motion artifacts were removed through
peak detection and spline interpolation. The
smoothed signals were band-pass filtered
(0.016–0.5 Hz) to reduce the effect of slow wave
drifts and physiological noise in the data
(Nuamah et al., 2019). Lastly, the change in
oxygenated (ΔHbO), deoxygenated (ΔHbR),
and total hemoglobin (ΔHbT) concentration was
derived using the modified Beer–Lambert
principle using the HOMER2 toolbox
(Huppert et al., 2009) on MATLAB. For the
scope of the analyses presented in this article we
relied on the ΔHbO data which was used to
derive region-wise peak activation (ΔHbOpeak),

Figure 1. (a) Schematic representation of the experiment protocol. (b) Two-back match event where the user is
expected to respond with a keypress. (c) Schematic representation of the probe-map used for neuroimaging via
fNIRS. The probe-map consisted of 11 regions of interest derived from the 10–10 EEG system, where the red
circles represent infrared (IR) sources, and the blue circles depict the IR detectors.
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functional and effective connectivity measures.
The raw time-series ΔHbO was sampled with
a window of duration 15 s which accommodates
the underlying periodicity of the hemodynamic
response (Zhu et al., 2020). The peak values and
functional connectivity (FC) measures were
derived across each window, after grouping
channels based on the relevant regions of in-
terest (ROIs). For FC measures, we relied on
Pearson’s correlation coefficients that were
transformed using Fisher’s method (Rhee &
Mehta, 2018). Two ROIs were considered
functionally connected only when the corre-
sponding Fisher’s z-score was ≥ 0.4 (Rubinov &
Sporns, 2010).

Time domain effective connectivity (EC)
analysis was performed to determine directed
causal networks across the ROIs, namely l-
dlPFC, r-dlPFC, mdPFC, PMC, SMA, and V
regions, using the Multivariate Granger Cau-
sality (MVGC) toolbox (Barnett & Seth, 2014).
The MVGC, an autoregressive model, is based
on the concept of Granger Causality, which
posits that a time-series variable A drives another
time-series variable B if the time-series history
of A along with that of B improves the prediction
of B better than its own time-history. For
a complete guide to this method of analysis and
the use of the MVGC toolbox, see Barnett and
Seth (2014). The Grainger Causality magnitude
was used as a measure of causal strength in our
observations. Connections that were found
significant were subject to Bonferroni correc-
tions to account for multiple comparisons.

Heart rate variability. The raw ECG signal
from the Actiheart was filtered for motion-
related artifacts using a multi-resolution
threshold (Strasser et al., 2012), and ectopic
beats were identified and removed by poly-
nomial interpolation (Marked, 1995). A peak
detection algorithm was used to identify R peaks
within the ECG signal (Li et al., 1995). The time
between successive R peaks, that is, normal-to-
normal (NN) interval was then derived from the
processed peak signals. We derived five repre-
sentative statistics for every five-minute window
for statistical analysis, three in the time domain
(mean heart rate (HR), standard deviation of NN
interval (SDNN), and root mean squared of
successive differences (RMSSD)), and two in

the frequency domain (low-frequency (0.04–
0.15 Hz; LF) and high frequency (0.15–0.4 Hz;
HF) power). These features were chosen given
their empirical associations with executive
function based on the NVIM (Forte et al., 2019).
All features were min-max normalized for each
participant before statistical analysis (Burr,
2007).

Statistical Analysis

Data partition. The fNIRS data, HR/HRV
features, single-element subjective responses,
and performance measure were partitioned into
five phases—I to V; where the time-series var-
iables were each characterized by their block
mean. Each phase consisted of two experiment
blocks from phase I to IV, while phase V was
made of three blocks. Each block lasted a du-
ration of 5 minutes, with ≈30 s of transition time
between them, where participants responded to
the single-element subjective questionnaires.
The last block (no. 12) was dropped from our
analyses due to a self-reported anticipatory bias
in some participants (N = 6).

Analyses. The performance measure (accu-
racy) was not normally distributed, therefore we
relied on the Friedman’s test, a non-parametric
equivalent to the one-way repeated measures
analysis of variance (ANOVA), to assess the
main effect of phase. Kendall’s W (Kw) is re-
ported as an estimate for effect size on the
Friedman’s test, with Wilcoxon signed rank tests
for post hoc analyses. On the fNIRS data, a one-
way repeated measures ANOVA was applied to
assess the main effect of phase on peak activation
in each region, and between regions for func-
tional and effectivity connectivity measures.
Notably, we relied on aggregated activation data,
i.e., mean across related regions, when analyzing
changes in functional and effective connectivity.
Therefore, while activation was captured across
eight regions, only five were used for connec-
tivity analyses for clarity in our visuals and in-
ference (see Figures 2 and 3). On the ANOVA,
we report the generalized eta-squared (η2g) as
a measure of effect size (Bakeman, 2005). All
possible pairwise comparisons were made using
paired t-tests to assess significance between levels
of the within subjects’ factor (phase). In
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subsequent discussions we primarily rely on
comparisons between neighboring phases (i.e.,
between I–II, II–III, etc.) as highlighted in our
plots. Heart rate–basedmeasures were partitioned
phase-wise, and subject to a one-way repeated
measures ANOVA. Subjective responses were
also non-normal, and therefore analyzed using
non-parametric tests identical to those employed
on the performance data. Bonferroni adjusted p-
values were used as a threshold to determine
significance where relevant.

RESULTS

Neural Activation

A significant main effect of time was found
in peak activation across all brain regions (F (4,
48) 2 [6.82, 17.34], all p < 0.04, η2g 2 [0.04–
0.26]). Figure 2 depicts the peak activation
trend across each region. Post hoc pairwise
comparisons (10 in total for each region) re-
vealed a consistent pattern of differences in the
l-dlPFC, r-dlPFC, PMC, and V2-V3 regions,
where we observe an increase in peak activation

going from phase I to phases II, III, and IV,
respectively (t (12) 2 [�4.47, �3.92], all p <
0.001); no significant differences were observed
between phases II and III (all p > 0.72). Peak
activation was found to increase further from
phase III to IV (t (12) 2 [�3.62, �3.51], all p <
0.0021), and finally decrease from phase IV to
V (t (12) 2 [2.31, 2.59], all p < 0.02). In the
aPFC, mdPFC, SMA, and V2-V3 regions, the
increasing trend between peak values of phase I
and phases II, III, and IV persisted (t (12) 2
[�2.42, �1.98], all p < 0.036) with significant
increments between each phase until phase IV,
and a decrease in activation from phase IV to V,
consistent with all other regions (t (12) 2
[�2.72, 2.15], all p < 0.051).

Functional Connectivity

Figure 3 presents mean z-score of FC across
all region-pairs at each time point. In general, we
observe that (i) network-wide FC is positive, (ii)
a global decrease in FC strength is apparent from
phase I to V; and (iii) the number of significant
connections was seen to decrease with time.

Figure 2. Peak activation across the five phases for each region of interest (ROI). All regions showed
a significant main effect of time, shaded segments represent consecutive time points that were sig-
nificantly different from each other. Error bars represent standard error. The plots are visualized with
jitter on the x-axis for clarity of the error bars.

Figure 3. The graphic presents the mean z-score of functional connectivity strength by ROI across all
participants at each phase, only those regions with significant connections are represented. Note.
cranial positions shown here are approximate representations of the regions of interest.
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Table 1 presents the functional connectivity
strengths for each region and time point. Here,
we aggregated activation data across the visual
cortex, that is, V1, V2/V3 channels, the SMA/
PMC, and aPFC/mdPFC regions for conve-
nience. A significant effect of time was observed
in the connectivity strength across all inter-PFC
connections, all PFC—visual cortex (V) con-
nections, and between the SMA/PMC—V re-
gions (F (4, 48) 2 [4.26, 22.34], all p < 0.04, η2g
2 [0.14–0.36]). Connectivity in the PFC, across
l-dlPFC, r-dlPFC and aPFC regions, had a mean
magnitude of 0.961 in phase I; l-dlPFC and r-
dlPFC associations were found to decrease from
phase IV-V (t (12) = 3.61; p = 0.0017); while
l-dlPFC—aPFC connections were shown to
exhibit marginal recovery through phase III to V

(t (12) 2 [�3.74, �3.52]; all p < 0.0021).
Connectivity of the PFC with the visual cortices
was weak yet significant, and relatively un-
changed across phase I–II (all p > 0.716);
a similar observation was found for connections
between the PFC and SMA/PMC regions (all p >
0.143). In the terminal stages, that is, phase IV to
V, these connections were seen to weaken or
were found insignificant.

Effective Connectivity

There was a main effect of time on the ef-
fectivity connectivity strengths across a subset
of significant networks in this experiment (F (4,
48) 2 [3.42, 26.34], all p < 0.002, η2g 2 [0.08,
0.19]); Figure 4 presents all effective

Table 1. Mean z-scores of functional connectivity in each phase.

FCmean across each phase

Connection I II III IV V

l-dlPFC–r-dlPFC 0.969±0.088 0.783I±0.075 0.758±0.085 0.690III±0.088 0.645IV±0.090
l-dlPFC–aPFC 0.951±0.092 0.871I±0.078 0.758II±0.084 0.833III±0.092 0.821±0.103
l-dlPFC–SMA 0.609±0.083 0.563 I±0.076 0.543±0.080 0.463III±0.078 0.491±0.088
l-dlPFC–V 0.447±0.104 0.474±0.086 0.420±0.089 0.340 ±0.084 0.360±0.098
r-dlPFC–aPFC 0.963±0.088 0.955±0.096 0.957±0.101 0.877III±0.098 0.827IV±0.107
r-dlPFC–SMA 0.666±0.103 0.573 I±0.080 0.514II±0.090 0.543±0.089 0.488IV±0.090
r-dlPFC–V 0.485±0.100 0.455±0.103 0.393±0.102 0.337 ±0.093 0.380±0.099
aPFC–SMA 0.631±0.106 0.585 I±0.086 0.565±0.099 0.594±0.099 0.558±0.105
aPFC–V 0.420±0.106 0.460±0.088 0.395±0.086 0.346 ±0.089 0.352±0.100
SMA–V 0.589±0.121 0.582±0.107 0.629±0.108 0.538III±0.089 0.526±0.102

aSuperscripts indicate when the mean z-score value of that phase was significantly different than the mean value in the
preceding phase, as revealed through post hoc comparisons, with all p < 0.003. The shaded cells represent insignificant
functional connections (mean z-score < 0.4). Each cell presents the mean value and the standard deviation (M ± SD).

Figure 4. Effective connectivity during the visuospatialworkingmemory taskwhere arrows indicate the direction
of causality. Only significant connections are shown. For bi directional connections, the average strength is
represented. Note. Cranial positions shown here are approximate representations of the regions of interest.
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connections deemed significant in each phase
using the causal strength metric.

We found unique changes in causal dy-
namics over time, all significant observations
are reported in Table 2, where significance is
determined based on the p-values reported by
the mvgc_pval function in the MVGC toolbox
(Barnett & Seth, 2014), the table also reports
the mean and standard deviations of the ef-
fective connectivity strength. In phase I, we
observed unidirectional effective connections
originating from the l-dlPFC to the aPFC/
mdPFC and r-dlPFC regions (all p < 0.001).
Significant unidirectional causality was also
found between regions in the PFC, SMA/PMC,
and the visual cortices (all p < 0.001). In phase
II, we observed a decrease in Fmean compared to
those levels seen in phase I (t (12) 2 [1.62,
2.31]; all p < 0.03), along with changes in
causal directions, with bidirectional connec-
tivity evidenced between the l-dlPFC-r-dlPFC
and aPFC-r-dlPFC regions (all p < 0.001). In
phase III, connections between the l-dlPFC and
visual cortex were not significant (all p > 0.71), and
the direction of network causality in the PFC was
reversed, with aPFC, r-dlPFC regions driving the l-
dlPFC (all p < 0.001). This change persisted in
phase IV, where we also observed bidirectional
causal connections between the aPFC—V regions
(p < 0.001). In the transition from phase IV toV, we

Table 2. Significant effective connections across
the phases of the experiment.

Connections Causal strength

Phase From To Fmean SD

I aPFC r-dlPFCa 0.064 0.0015
aPFC V 0.041 0.0024
l-dlPFC aPFC 0.069 0.0021
l-dlPFC r-dlPFC 0.051 0.0045
l-dlPFC V 0.050 0.0003
r-dlPFC aPFCa 0.065 0.0005
r-dlPFC V 0.048 0.0017
SMA aPFC 0.065 0.0041
SMA r-dlPFC 0.064 0.0051
SMA V 0.046 0.0052

II aPFC r-dlPFCa 0.053 0.0041
aPFC V 0.067 0.0069
l-dlPFC aPFC 0.069 0.0013
l-dlPFC r-dlPFC" 0.050 0.0005
l-dlPFC V 0.039 0.0027
r-dlPFC l-dlPFC00 0.052 0.0048
r-dlPFC aPFCa 0.051 0.0061
r-dlPFC V 0.046 0.0017
SMA aPFC 0.046 0.0027
SMA r-dlpfc 0.041 0.0023
SMA V 0.041 0.0052

III aPFC l-dlPFC 0.046 0.0013
aPFC Va 0.067 0.0082
r-dlPFC l-dlPFC 0.049 0.0016
r-dlPFC aPFC 0.056 0.0019
r-dlPFC V 0.046 0.0024
SMA aPFC 0.062 0.0006
SMA r-dlpfc 0.052 0.0032
V aPFCa 0.063 0.0017

IV aPFC l-dlPFC 0.046 0.0022
aPFC Va 0.063 0.0061
r-dlPFC l-dlPFC 0.048 0.0053
r-dlPFC aPFC 0.068 0.0012
r-dlPFC V 0.046 0.0017
SMA aPFC 0.062 0.0042
SMA r-dlpfc 0.052 0.0036
V aPFCa 0.066 0.0092

(Continued)

Table 2. (Continued)

Connections Causal strength

Phase From To Fmean SD

V aPFC l-dlPFC 0.054 0.0071
aPFC Va 0.061 0.0036
r-dlPFC l-dlPFC 0.050 0.0022
r-dlPFC aPFC 0.061 0.0043
SMA aPFC 0.069 0.0061
SMA l-dlPFC 0.055 0.0052
V aPFCa 0.064 0.0027

amatched superscripts in each phase represent bi-
directional connections that were found causally related.
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found new causal pathways of significance where
the SMA was observed to drive the l-dlPFC (p <
0.001), which until phase IV was shown to drive
causal networks to the aPFC and r-dlPFC regions
(all p < 0.001).

Heart Rate Measures

A significant main effect of time was found
across all four heart rate–based measures (F (4,
48) 2 [7.71, 14.46], all p < 0.0001, η2g 2 [0.08,
0.13]; Figure 5). In mean HR we observed
a significant increase from phase III to IVand IV
to V as shown in Figure 3 (t (12) 2 [�3.61,
�3.32]; p < 0.003). For the LF measure, post
hoc comparisons revealed significant differences
in the mean values between phase I, and all
subsequent phases. Notably, we found that LF-
power density increases relative to phase I in all
other phases (t (12) 2 [�3.15, �2.79]; all p <
0.01). A similar increase was found going from
phase II to III (t (12) = �2.11; p = 0.028); the
measure was found to plateau across phase III–
IV (p = 0.132), before decreasing across phase
IV–V (t (12) = 3.33; p = 0.003). A significant
increase inHFwas evident between phase I and II
(t (12) = �2.38; p = 0.017); thereafter HF was
seen to remain unaltered across phase II–III (p =
0.051) before decreasing from phase III–IV (t
(12) = 2.46; p = 0.015) and plateauing across
phase IV–V (p = 0.76). In SDNN and RMSSD,
we observed significant increases across phase

I–II (t (12)2 [�3.211,�1.89]; all p < 0.041), and
II to III (t (12) 2 [�2.91, �2.23]; all p < 0.023),
while a plateauwas observed between phase pairs
III and IV (all p > 0.054), and a decrease in phase
IV–V (t (12) 2 [3.55, 3.83]; all p < 0.002).

Performance Accuracy

A main effect of time was found on the
performance accuracy metric (χ24 = 27.62, n =
13, p < 0.0001, Kw = 0.21). Post hoc analyses
revealed a marginal increase in accuracy going
from phase I to phase II (t (12) = �1.91; p =
0.041), a decrease in accuracy from phase III to
phase IV (t (12) = 1.76; p = 0.052), and a further
decrease in accuracy levels from phase IV to
phase V (t (12) = 3.33; p = 0.003); see Figure 6a.

Subjective Responses

A main effect of time was found on all three
subjective responses, that is, perceived effort,
fatigue, and discomfort (χ24 2 [47.4, 65.93], n =
13, all p < 0.0001, Kw 2 [0.08, 0.18]). Post hoc
comparisons revealed an increase on all three
self-reports early in the experiment (phase I-II; t
(12) 2 [�2.81, �2.43]; all p < 0.016). This
increasing trend persisted through phase III–V
for discomfort and fatigue reports (t (12) 2
[�2.73, �2.33]; all p < 0.019); however, effort
scores did not vary significantly beyond phase II
(all p > 0.082); see Figure 6b.

Figure 5. Trends in HR-based measures across the five phases. The plot represents the min-max nor-
malized values for each feature. A significant effect of time was observed across all measures with a small
to moderate effect size. Time domain features—Mean HR, RMSSD, and SDNN. Frequency domain
features—spectral power densities in the LF (0.04–0.15 Hz) and HF (0.15–0.40 Hz) regimes. Shaded
segments represent consecutive time points that were significantly different from each other, error bars
represent standard error. The plots are visualized with jitter on the x-axis for clarity of the error bars.
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DISCUSSION

In this study, we examined the spatiotemporal
dynamics of brain activity, and changes in heart
rate and its variability (HR/HRV) during a fa-
tiguing visuospatial two-back WM test. In
particular, we were interested in the time-on-task
effect and related deficits during the WM ex-
ercise. We know that prolonged cognitive ac-
tivity at fixed or varying workload levels is
known to elicit an increase in both subjective
and objective fatigue indices and a decrease in
WM performance (Ackerman et al., 2010; Lim
et al., 2010); and that this fatigue can manifest as
a decrease in accuracy, an increase in self-
reported fatigue scores or a decrease in the
motivation to continue on task (Krimsky et al.,
2017; Möckel et al., 2015). Therefore, we hy-
pothesized that these changes will be evidenced in
the present study, driven by a combination of
factors underlying the experience of the partici-
pant, including, learning during the initial stages of
the experiment, a struggle to optimize available
neural resources for staying on task, and a decline
in themotivation to continue the exercise under the
absence of additional rewards.

Our key findings were as follows, participants
exhibited a largely unvarying trend in perfor-
mance accuracy beyond the initial phase, before
it worsened through the terminal stages of the
experiment. We observed an increase in peak
ΔHbO across key regions in the PFC, regions
peripheral to the PFC, and the visual cortex until
the penultimate experiment phase, where we

note a global decrease in activation levels. These
were accompanied by a decline in the number of
significant functional associations across brain
regions and an increase in perceived fatigue.
Finally, the trends in peak activation were
mirrored in HR/HRV, where mean HR remained
relatively unchanged until phase II before in-
creasing significantly until phase V, while
temporal and spectral HRV features were seen to
increase till the penultimate phase before di-
minishing (RMSSD, SDNN) or remaining un-
altered (LF, HF—power) through the terminal
phase. On the task, we believe a few key pro-
cesses were at play, early in the experiment (i.e.
phase I–II) participants were likely “learning”
the task until a stable performance threshold was
reached beyond this period, participants ex-
pended effort to maintain task performance (III–
IV), before they reached a state where they were
unable to continue at that level or meet task
demands altogether (IV-V).

Some of these observations are clearer when
we consider the nature of the task. The visuo-
spatial two-back test demands sustained atten-
tion andWM. Although workload on the N-back
task was not adapted (N = 2; constant), in its
prolonged format, perceived workload was
likely to vary (Grech et al., 2009), therefore
eliciting distinct neural and physiological re-
sponses associated with the time-on-task effect
(Dimitrakopoulos et al., 2018), for example,
early in the experiment, we believe that the
perceived workload is high as participants learn

Figure 6. (a) Performance accuracy (%) during the time course of the experiment. (b)
Subjective single-element responses on effort, fatigue, and discomfort. Shaded segments
represent consecutive time points that were significantly different from each other, error
bars represent standard error. The plots are visualized with jitter on the x-axis for clarity of
the error bars.
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to perform the task, beyond this period, we
anticipate the perceived workload to plateau
until time-on-task related effects render the task
too demanding to continue. There are recog-
nizable brain regions essential to the behavioral
adaptation, attentional and response inhibition,
and learning characteristic of such WM ex-
ercises (D’Esposito et al., 1995), including the
prefrontal, motor, and visual cortices (Ahn et al.,
2016). However, with time-on-task, we believe
that fatigue dominates the behavioral and neu-
rophysiological responses that drive this process
(Qi et al., 2019). In our study, we found that
participants’ self-reports of fatigue increased
with time, although their perceived effort re-
mained unaltered beyond phase II. Concomi-
tantly, we observed a significant decline in two-
back performance accuracy during the latter half
of the experiment. Fatigue is often characterized
as the “the reluctance of further effort”
(Hopstaken et al., 2015b), and given our ob-
servations with the self-reports and in perfor-
mance outcomes, we reason that the changes
seen during this experiment are largely fatigue
related.

WM is primarily mediated by networks in the
PFC, where domain-specific models postulate
that the lateral PFC is functionally organized to
process visuospatial information (Barbey et al.,
2013). A key component of this network is the l-
dlPFC region, which embodies specific com-
putational mechanisms for monitoring and
manipulating those representations (Barbey
et al., 2013). The primary role of the frontal
cortex during such WM tasks is towards at-
tentional inhibition, that is, reducing the in-
fluence of distracting streams of information and
to retain focus on the task at hand (Engle et al.,
1995; Kane & Engle, 2002). Therefore, an in-
crease in PFC activity, early in the experiment, is
indicative of the effort employed by the par-
ticipants in learning the WM task (Petruo et al.,
2018). Beyond this period, activation in PFC
regions was mostly stable, that is, through phase
II-III. One explanation for this is the static
workload on the task, which is unlikely to elicit
a fatigue response early on (Fan & Smith, 2017).
However, beyond phase III, we found that neural
activity increased significantly into phase IV,
and this was true across all regions, even those

peripheral to the PFC. We reason that this in-
dicates the onset of mental fatigue due to time-
on-task effects, which prior investigations reveal
is preempted by an increase in activation in
regions peripheral to those essential for task-
related behaviors (Causse et al., 2017). Causse
et al., (2017) argue that this is symptomatic of
the additional resource demand placed by the
need to sustain performance at some threshold,
when performance accuracy itself appears to
have saturated, further alluding to adaptations
arising from fatigue in the form a distributed
utilization of cerebral resources.

Brain activation across most of the regions
monitored in this study showed an increasing
trend, but beyond phase IV, we found a global
decrease in activation levels. This is likely due to
a fatigue-driven lack of motivation to continue
the task, especially in the absence of any ad-
ditional rewards (Hopstaken et al., 2015a). Our
reasoning and inferences around the influence of
fatigue and related task disengagement are
further supported by our observations with the
connectivity data, where we found elevated
functional associations in the PFC early during
the experiment, when performance was im-
proving with participant learning on the task.
Unlike our observations on regional activation,
functional connections were seen to largely
diminish in strength with time-on-task, with
some connections between the prefrontal and
visual cortices lost altogether in the later stages
of the experiment. These observations are in
alignment with prior evidence around the in-
fluence of time-on-task induced cognitive fa-
tigue on functional connectivity, where bilateral
connections in the PFC and peripheral regions
were found to decrease over time (Lim et al.,
2010).

The observations in effective connectivity
reaffirm the centrality of the lateral PFC in
enablingWMperformance (Barbey et al., 2013).
Early in the task, we found that the l-dlPFC was
a prominent driver of connections in the PFC
with unidirectional connections to the aPFC and
r-dlPFC regions. These regions were also shown
to exhibit effective connections with the visual
cortices. Over time, however, we observed (i)
a role reversal in some of these pathways, with
the r-dlPFC, aPFC, and SMA region found to be
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driving l-dlPFC activity across phase III–V, (ii)
some causal relationships between the prefrontal
and visual cortex were lost altogether, and (iii)
an overall decrease in network density as
a function of time was observed. The re-
organization of causal pathways is likely
fatigue-driven, with prior investigations re-
porting topology alterations, disintegrations, and
directionality changes driven by fatigue due to
time-on-task (Wang et al., 2020; Yu et al., 2018;
Zhao et al., 2016). While the specific neural
mechanisms that originate these changes remain
unclear, we hypothesize that this could be an
effect of the resource demand placed by sus-
tained task performance, where with time-on-
task additional cortical regions are recruited to
preserve individual performance at some
threshold. This hypothesis is supported by the
observation that, beyond phase III, we found the
r-dlPFC and APFC regions driving activity in
the l-dlPFC region, a pathway that was not
previously deemed significant.

Interestingly, the influence of fatigue in our
observations was not limited to neural in-
dices. We found distinctive parallels in the
response of HR/HRV measures. The neuro-
visceral integration model (NVIM) posits that
the key role of the prefrontal cortex during
a WM task is toward attentional inhibition
(Thayer et al., 2009). This inhibitory process
is reflected in cardiac activity through the
control of the vagus nerve. In our experi-
ments we expected that this influence would
manifest as an increase in heart rate vari-
ability (HRV) during the early stages before
fatigue-driven declines in the latter parts. The
temporal characteristics of HRV, that is,
RMSSD and SDNN largely align with this
expectation, that is, as PFC activity increased
with time-on-task, heart rate variability also
increased. Mean HR was largely unchanged
early in the experiment (phase I–III), how-
ever, beyond this interval, we found a sig-
nificant increase in mean HR concomitant
with a decrease in HRV measures. This fits
our expectation of sympathetic dominance
or parasympathetic withdrawal under cog-
nitive saturation due to time-on-task (Luque-
Casado et al., 2016; Thayer et al., 2009).

Furthermore, in the spectral domain, we
found that the LF and HF-power densities
mirrored these trends. Under controlled
conditions, vagal activity is known to be
associated with LF-power (Thayer et al.,
2005), and our observations corroborate this
idea. The finding in this study that the dy-
namics of HR/HRV aligned with the NVIM
and were seen to reflect changes in neural
activity is one that is both interesting and in
need of further investigation. In particular,
there is need for clarity on the specific pro-
cesses driving these relationships, for exam-
ple, lower HR/HRV early on could be driven
by learning on the task, before vagally me-
diated effects or the influence of time-on-task
fatigue. Nevertheless, we are optimistic that this
could be a path forward in our search for robust
and prescient state recognition in the field.
Especially, knowing that the recognition of
WM deficits in emergency responders may
benefit from technologies that capture such
underlying neurophysiological dynamics
unobtrusively.

Limitations of the study are as follows. First,
in our experiments we found an anticipation
bias in some participants (N = 6) during the
terminal block, where they returned to an ar-
tificial state of alertness, this required that we
remove the last block from our analyses to
ensure that the true nature of time-on-task re-
lated fatigue is preserved. Second, we did not
capture motivation or engagement levels during
active task performance to minimize disruptions
to the participant’s experience. However, these
measures could have improved how we un-
derstand the impact of motivation on fatigue
and WM decline, which is shown to offset
fatigue states in related experiment (Boksem
et al., 2006). Third, besides the task demand,
wearing the fNIRS instruments for a prolonged
period of time is in itself uncomfortable, which
may have skewed participant experiences and
self-reports. Fourth, given the duration of the
task, vascular nonlinearities may perturb the
hemodynamic response signal and therefore our
inferences (Huppert, 2016). While we account
for issues such as sensor drift and avoid event-
related analyses, the effects of vascular
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recovery and habituation need careful consid-
eration. Finally, although our end goal is to
translate laboratory results into fieldable fatigue
detection solutions, our task and setup are not
wholly congruent with real-world WM de-
mands; this necessitates ecological valid ex-
periment paradigms with stakeholders actively
engaged in those responsibilities. Nevertheless,
our findings support future investigations into
the neural and physiological underpinnings that
drive WM and related performance decline due
to fatigue.

CONCLUSION

Cognitive fatigue can have serious con-
sequences in safety-critical domains such as
emergency response. Our study captured
fatigue-related neurophysiological dynamics
during a 60-minute visuospatial WM task. We
found that WM performance was significantly
impacted by fatigue-related changes in neural
activity. The changes in neural activity, and
declines in functional and causal connections,
were shown to be temporally coupled with
heart rate and its variability. This observation
reaffirms the prospect of operationalizing
unobtrusive sensing paradigms for recognizing
fatigue states in an applied setting. However,
larger investigations under ecological valid
conditions are necessary to ensure the gen-
eralizability and task-independence of our
observations.

KEY POINTS

• On the working memory task, participants in-
variably reported feeling fatigued and un-
comfortable; however, perceived effort did not
change.

• Task performance plateaued past the initial phase
and was found decline in the later stages of the
experiment.

• An increase in peak brain activation was found in
the PFC and in peripheral regions, until the ter-
minal phase, where activation was seen to drop
globally.

• Unlike brain activation, connectivity strengths were
seen to largely decline with time, and causal
connections changed beyond task-relevant regions.

• Trends in peak activation were mirrored in HR/
HRV, with temporal and spectral HR/HRV features
seen to increase until the penultimate phase.
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