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Abstract—The effects of cognitive stress are complex and multi-dimensional with nuanced neural and physiological representations
across our lifespan. Chronic and instantaneous stressors are known to alter both executive function and motor performance — a
particularly challenging prospect for older adults. Age, sex, and motor activity are critical yet under-represented dimensions in the
domain of stress detection. Through the present work, we explore a subset of these variables and the relevance of brain
hemodynamics and heart rate variability (HR/V) as biomarkers of stress in an aging population. We rely on a multimodal,
sex-balanced, motor-stress data set (N = 59) and an exhaustive machine learning workflow to operationalize the unique
neurophysiological states that form the human stress response. We found that a quadratic discriminant was sufficient to separate the
two states across feature, demographic, and activity variables. We report a stress detection accuracy between 78− 98% when using
models trained independently on each feature-set. However, these models were highly sensitive to sex, and activity differences —
with distinct regions, and features implicated in stress recognition. Both HR/V and fNIRS based features were excellent indices of
cognitive stress, however neither generalized to a degree beneficial toward operational use. Our observations underscore the
importance of task-context, age, and sex as factors in modeling stress detection tools for older adults.

Index Terms—affective inference, cognitive stress, sex, fNIRS, heart rate variability, aging, machine learning

✦

1 INTRODUCTION

M ENTAL stress is a complex, multi-dimensional phe-
nomenon that triggers a cascade of physiological,

behavioral, and cognitive adaptations [1]. These adapta-
tions, which may be positive or negative, change across our
lifespan, and influence our ability to manage situations and
task demands. Despite substantial research on the interac-
tions between stress and the human brain, there remains a
limited understanding of it’s influence across demographic
and physiological variables, and on motor coordination [2].
This is partly due to the nature of human stress-response,
where genetic [3], experiential, and developmental [4] at-
tributes moderate our lifelong adaptations and behaviors.

In older adults, perceived stress is known to trigger
negative affect and play a significant role in mediating
the influence of stressful life-events and psychological dis-
tress [5]. Epidemiological data point to similar concerns,
with both chronic and instantaneous stressors shown to
aggravate hypertension [6] and the incidence of acute car-
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diovascular ailments [7]. These challenges are particularly
relevant to older adults, who when cognitively burdened
may require additional neural resources to perform what
were normally automated tasks. For example, frail, senior
patients often “stop walking, when they start talking“ [8],
presumably due to the attention demands of the conversa-
tion — a behavior that was found to be an early indicator
of fall incidence. Furthermore, geriatric patients may also
exhibit a decrease in voluntary muscle activation due to
task workload [9], therefore, this motor-cognitive dual-task
burden is a serious challenge in elderly care and one that
demands further consideration. Above all, the repetitive
performance of motor activity, such as knee-extension or
hand-grip is central to musculoskeletal rehabilitation [10],
stroke recovery [11], and the management of Alzheimer’s
disease [12] in those populations. Hence, stress detection
in task contexts that include motor activity can enable
better mapping between task demands and the patient’s
cognitive availability, and advance pertinent rehabilitation
paradigms for the target demographic.

In our view, a critical bottleneck towards this goal is
the lack of valid data sets that explore stress manifesta-
tion in populations of older adults during motor activity.
Additionally, degeneracy in the representations of stress,
e.g. those due to aging [13] or other underlying conditions
[14]; activity-related artifacts, e.g. those due to movement
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or breathing; and variability in experiment design and
sample populations further obscure relevance and present
as barriers to translation. In Section 2 we briefly expand
on these issues and discuss the opportunities that motivate
our current investigation.

In this work, we explore stress detection during motor
exercises among older adults. We hypothesize that our ob-
servations will aid the development of task-agnostic stress
detection tools for our study demographic. To this end, we
rely on a multimodal, sex-balanced, motor-stress data set
that includes functional near-infrared spectroscopy (fNIRS)
as neural indices, and electrocardiography (ECG) features
as physiological biomarkers. Salivary cortisol samples, a
gold standard among stress indicators [15], provide ground
truth for stress labels, along with the self-reported State-
Trait and Anxiety inventory (STAI) responses [16]. We
developed a supervised learning model and contrast the ef-
ficacy of neural and physiological biomarkers as indicators
of stress across demographic and activity-related variables
in a sample of older adults. Our observations build from the
preliminary evidence introduced in the conference article
[17] that focused on temporal and spectral components of
HR/V as indicators of stress during hand-grip exercises.

Contributions

We summarize the main contributions of our work below:

• Evidence that cerebral hemodynamics, heart rate
variability and derived measures are independently
representative of the neurophysiological stress-
response in older adults, beyond the effects of aging
or motor activity-related perturbations.

• Insight on the influence of motor-activity and
sex on stress representations, and the need for
demographic-specific stress detection tools in oper-
ational contexts such as rehabilitation.

• A validated stress-induction protocol, an accepted
standard in salivary cortisol as ground truth, a sex,
physiology and age-balanced sample of older adults
to support our observations.

The remainder of this paper is organized as follows:
Section 2 presents background related to stress detection
and the current research gaps. Section 3 details our exper-
iment protocol, feature engineering, and machine learning
workflow. Section 4 presents our results and discussions. In
Section 5 we conclude with the limitations and future work.

2 BACKGROUND AND RESEARCH GAPS

The human stress response is mediated by two pathways,
the Sympathetic Adrenal Medullary axis, and the Hypotha-
lamic Pituitary Adrenal axis [2]. The former is responsible
for fast adaptations under acute stress and instantiates our
“flight or fight“ behavior, while the latter moderates our
slow adaptations to chronic stress. Both pathways drive

allostasis and are characterized by distinct neurophysiolog-
ical signatures [18]. For example, the cardiovascular system
adapts to stressors with an increase in heart rate and blood
pressure [19], [20], the endocrine system mediates stress re-
sponse by altering neurochemistry [21]. These changes are
accompanied by neural mechanisms that underlie our per-
ception and processing loops [22]. Researchers can reliably
infer stress conditions using invasive methods that measure
the release of neurotransmitters or stress hormones, e.g.
blood samples for catecholamines [23] and salivary swabs for
corticosteroids [24] to name a few, however, these methods
remain cumbersome.

The need for fieldable stress indices has motivated re-
searchers to look for other, non-invasive, approaches. Some
have described statistically significant changes in heart rate
variability, event related potentials, electroencephalogra-
phy (EEG), photopleythsmograms, thermal imaging, and
blood sugar (or) insulin levels as indicators of stress
across multiple experiments [25], [26]. Indeed, a substantial
amount of this research has focused on operationalizing
biosignals for stress detection using existing, and novel
machine learning algorithms. Groups have successfully
used unobtrusive indicators such as heart rate variability
(HR/V) [27], electrodermal activity (EDA) [28], and facial
affect [29] with stress detection accuracy ranging between
80 − 95%. A subset have also explored the use of neural
indices; Al-Shargie et al. report the use of a decision fusion
architecture for fNIRS and EEG signals resulting in a classi-
fication accuracy of 96.45% [30]. For an overview of sensing
modalities and algorithms, see [25]. Despite the widespread
attention, these models are constrained by one or more
of the following factors – the experiment conditions and
their operational relevance, the participant demographic,
the stress-induction paradigm, or the ground-truth that
relates stress labels.

2.1 Experiment Conditions and Operational Relevance
The experiment setting is typically non-ambulatory, where
the stressor, task, and environment are carefully controlled,
e.g. workplaces, laboratories, or other supervised environ-
ments [31], [32]. While models developed under these con-
straints can be highly accurate, generalization is limited due
to their sensitivity to external perturbations, and changes
to the environment [33]. Some researchers have advanced
model development toward ecologically valid, and ambula-
tory settings that are consistent with real-world conditions
(e.g. [34], [35], [36]). These efforts aid in the expansion of
existing benchmarks, however concerns related to (1) the
role of contextual information such as motor activity; (2)
sensor choice, given the fieldability and fidelity demands of
operational use; and (3) sensitivity to subjective variations
and demographic factors such as age remain.

Therefore, there is a need for studies that incrementally
and methodically assess the effect of controlled perturba-
tions, e.g. motor activity like those during an exercise
or rehabilitation routine, on stress representations. Such
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Fig. 1. (a) Schematic representation of the experiment timeline. Participants began each day with warm-up exercises and baseline measurements.
Maximum voluntary contraction was measured before and after each block condition. Salivary cortisol samples were taken before and after the
TSST block to verify stress induction. Motor activity pre- and post-stressor was identical in each session with hand grip or knee-extension
exercises administered to the participant contingent on the experiment protocol. (b) The probemap used for capturing brain hemodynamics during
the experiment. Brain regions of interest are as highlighted, with 26 channels on the motor cortex, and 4 channels on the prefrontal cortex.

considerations are especially relevant to older adults who
suffer from the dual-task burden. We hypothesize that
affective computing tools that incorporate motor activity
will improve rehabilitation outcomes by advancing state-
aware intervention methods for older adults, given that
motor activity can aid in neurocognitive performance im-
provements over time [37], while stress is known to impede
relevant faculties [38].

2.2 Subject Diversity
Stress-responses and manifestation are individualistic and
influenced by demographic factors [39]. A critical limitation
in prior stress detection research is subject diversity. Typical
populations recruited for these experiments are restricted
to the college-going age group (e.g. [30], [31]) and group
balance considerations across demographic attributes such
as sex, age or physiology are not widely reported. This per-
petuates the deficiencies of representation seen in human
subjects literature [40].

Cognitive stress is known to affect males and females
to different extents, and along distinct dimensions. Studies
have reported differences in strategies adopted by males
and females in coping with these stressors (e.g. [41]). A
meta-analysis from Liu et al. [42] found that the Triers
Social Stress Test (TSST), an established stress induction
paradigm in behavioral research, elicits different salivary
cortisol levels across the sexes and that the peak levels, and
recovery patterns were different across task modalities. In
addition, we know that most neurophysiological indices

are sex-specific, e.g., resting state functional connectivity
differences in the brain [43] and the activation and recovery
patterns of HR/V [44], etc.

Age is a relevant demographic because pathophysiolog-
ical conditions and oxidative stress can mask the typical
neurophysiological indicators of stress [44], yet, few stress
detection models have been developed using data from
older adults. In one recent study Delmastro et al. [45]
developed a stress detection model with nine participants
under mild cognitive impairment, however the work re-
lied on implicit stress labels derived from the experiment
protocol which resulted in an imbalanced data set. Nev-
ertheless, the preliminary results were encouraging with a
state estimation accuracy of 88.2% when using HR/V and
EDA-based features. Furthermore underlying conditions
in older adults may obscure the representations of stress,
which demands considerations toward factors like levels
of physical activity or an aging population specific co-
morbidities such as obesity in our samples. Needless to say,
older adults remain under-represented in this domain, and
ensuring balance along other dimensions such as sex or
physiology present as additional barriers.

2.3 Stress Labels and Induction Methods
Another limitation in existing research relates to the ground
truth reference for stress. Some studies rely on the ex-
periment protocol as ”implicit” ground truth (e.g. [45]),
i.e. states prior to a stressor are regarded as ”no-stress”
states while states during or after the stressor are labeled
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as ”stress” states. This approach places emphasis on the
type of stressor used, where uncertainty due to individual
differences moderate our overall confidence [46]. Other
studies rely on subjective responses as the index for ground
truth stress. A battery of surveys and questionnaires have
been adopted to reflect on these state changes (e.g. the
STAI or NASA Task Load Index), but such methods suffer
from recall bias, add to the participant’s cognitive burden,
and are not directly relevant to their experience of the
stressor. Methods that use neurochemical indices, e.g. sali-
vary cortisol or salivary-alpha amylase, both widely used
measures in the clinical diagnosis of emotional stress events
[47], [48] are optimal. However, few studies rely on these
mechanisms given the associated challenges.

The choice of ground truth stress is also impacted by
the choice of stressor, not all stress-induction methods are
equivalent. Techniques that rely on the use of emotional
imagery, simulated stress events, driving tasks or other
tasks may be inherently limited by a lack of standardiza-
tion and subject variability. There is a growing scientific
consensus behind validated techniques such as the Triers
Social Stress Test (TSST), which relies on a combination of
public interview and mental arithmetic [49], and is known
to increase activation of the hypothalamic-pituitary adrenal
axis, consistent with an acute and instantaneous stress
response [50].

In their review on psychological stress detection with
bio-signals, Giannakakis et al. identified 41 studies on
stress detection with machine learning tools (see Table 3
in [25]), however only six studies among them (14.63 %)
relied on a validated stress-induction protocol (e.g. TSST or
the Montreal Imaging Stress Task). Therefore, the choice
of stressor remains a major impediment to the broader
relevance of earlier findings. Incidentally, among those six
studies, not one study achieved a sex balance, in fact,
only two among the six included a female population,
and only one in all 41 reported an overall sex balance.
Further, in those six studies, the participant age spanned
20 to 30 years with only two out of 41 relying on a sample
that included senior adults (> 65 years), highlighting the
importance of representation and use-case relevant subject
demographics. Finally, none among those six studies relied
on a neurochemical stress index for labeling their obser-
vations, and only two out of the 41 reported the use of a
related neurochemical index for their ground truth. These
observations highlight the deficiencies and opportunities
that motivate our current work.

2.4 Summary

There are applied and methodological challenges in proto-
col design, experimentation, data collection, feature identi-
fication, and the development of machine learning models
robust to the challenges discussed in the prior sections.
Through our current work we wish to improve on some of
the existing limitations – (1) we leverage a motor-intensive

exercise and explore stress detection during concurrent mo-
tor activity; (2) we extend subject diversity by considering
an under-represented sub-group, i.e. older adults; (3) we
ensure a sex and body-type balance in our sample; (4) we
adopt a validated stress induction protocol; and (5) we
rely on salivary cortisol measures as ground truth to label
stress states. This way we hope to advance the collective
understanding on the role of sex and motor activity on the
neurophysiological representations of stress in older adults.

3 METHODS

3.1 Data set
The data operationalized in this investigation derives from
a comprehensive resource introduced in [51]. Below we
detail elements of a stress protocol and the corresponding
participant pool relevant to our present work.

3.1.1 Experiment protocol
On informed consent, all participants completed two ex-
periment sessions. Each session entailed an identical motor
exercise, either hand-grip or knee-extension before and after
a stress-induction period. Participants came in on separate
days for each session and the order of the motor exercise
was counterbalanced to account for any familiarization
bias. The sessions began with participants wearing relevant
instruments, warm-up exercises, baseline capture of bio-
signals, and strength testing using maximum voluntary
contraction (MVC) protocols (see Fig. 1). After the MVC,
participants completed a control task where they were
instructed to maintain a force level at 30% MVC for 15s
followed by 15s at rest for ten trials i.e. the pre-stressor
phase for a total time of 300s. Participants then engaged
in the stress induction activity, a Triers Social Stress Test
(TSST) [49] for the stressor phase. In the TSST, participants
were given 10 minutes to prepare and deliver a five minute
speech on an unknown topic to an independent review
panel. Following the speech, participants were engaged by
the panelists in a series of challenging mental arithmetic
tests for another five minutes. During the stressor activity,
the panelists maintained a neutral affect and took notes
on participant behavior, while periodically monitoring a
video camera. Salivary cortisol samples were taken be-
fore and after the TSST block to serve as ground truth
for cognitive stress. After the stressor phase, participants
repeated the motor task for 10 trials resulting in the post-
stressor experiment block. During both pre- and post-stressor
conditions participants received visual feedback about the
current force/ torque levels to help them maintain their
hand-grip force and knee-extension torque at 30% MVC.
Importantly, the force/ torque threshold was limited to
30% their MVC so that participants could reliably maintain
these levels without getting fatigued for the five minute
duration. Participants also reported their State-Trait and
Anxiety Inventory (STAI) responses after both the pre-
stressor and post-stressor activities.
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3.1.2 Participants
The study included a total of 60 older adults, with 30
females and 30 males. In each sex, 15 individuals were
obese with a body mass index (BMI) > 30.0. One male,
obese participant dropped out during the experiment. All
participants were right hand dominant; and reported no
musculoskeletal injuries for at least an year prior to the
experiments. The median age among them was 71 years
(µ = 72.23, σ = 5.69 years), the median BMI was 26 (µ
= 30.18, σ = 7.61), the median height was 1.68m (µ =
1.69, σ = 0.11m), and the median weight was 85kg (µ =
86.89, σ= 23.82kg), these numbers together form a repre-
sentative sample of older adults (> 65 years) in the United
States [52]. All procedures were approved by University’s
Institutional Review Board (IRB Number: IRB2015-0647F),
and proceeded in accordance with the Ethics Code of the
American Psychological Association.

3.1.3 Bio-instrumentation
Participants were instrumented with a continuous wave
fNIRS device (TechEn CW6 system TechEn inc., Milford,
MA, USA) with a probemap focused on the motor cortex
(supplementary motor area (SMA), primary motor cortex
(PMC)) along with four channels on the prefrontal cortex
(PFC) that captured brain hemodynamic activity, these
regions were chosen given the motor-intensive nature of
the task. The participant’s heart rate and its variability
(HR/V) were monitored using a three lead ECG, and
amplifier interface (BIOPAC ECG100C, BIOPAC Systems
Inc., Aero Camino Goleta, CA, USA). For the hand-grip
protocol, participants interacted with a hand dynamometer
(SSL25B, BIOPAC Systems Inc., Aero Camino Goleta, CA,
USA), while an isokentic dynamometer (HUMAC NORM,
Computer Sports Medicine Inc., Stoughton, MA, USA) was
used during the knee-extension exercises.

3.2 Preprocessing of biosignals

3.2.1 Brain hemodynamics
Cerebral hemodynamics was captured using the fNIRS
device at 50Hz. Near-infrared spectra transmitted at two
wavelengths (λ1,2 = 690, 830nm), from 8 emitters, passing
through neural tissue and blood vessels, were detected
by 13 separate detectors. The transmitted signal was used
to characterize vascular hemodynamics across a network
of 30 channels. Firstly, the light intensity registered by
the instrument (Io(λ)) was converted into optical density
(OD(λ)) using a log transform on the ratio of received
(output) to transmitted (input) intensities [54],

OD(λ) = log10

(
Io
I

)
λ1,2

(1)

The optical density signal was low-pass filtered at 3Hz to
reduce high frequency noise that could mask the under-
lying signal. Motion artifacts that showed abrupt change

TABLE 1
Features derived across each window from the time

series brain hemodynamics data.

Temporal (Xfnirs)

Mean (µ) 1
n

∑n
i=1 xi

Variance (σ2) E[(X− µ)2]

Max. Maximum value in window

Min. Minimum value in window

Kurtosis E
[(

(X−µ)
σ

)4
]

Skewness E
[(

(X−µ)
σ

)3
]

AUC ≈ 1
2

x0−xn
n

[
x0 + 2 ·

∑n−1
i=1 xi + xn

]
Functional connectivity (XFC )

Corr. E[(X1−µ1)(X2−µ2)]
σ1σ2

* E = the expected value; AUC = area under the curve,
Corr. = linear correlation coefficient.

(peaks) were detected and corrected using a spline interpo-
lation algorithm [55], and further smoothed using wavelet
transforms [56]. The rectified signals were band-pass fil-
tered at 0.5− 0.016Hz to reduce the effect of physiological
noise and slow wave drifts. Lastly, change in oxygenated,
deoxygenated, and total (∆HbO/R/T) hemoglobin was
calculated across all 30 channels using the modified Beer-
Lambert principle [57]:

∆OD(λ) = ϵ(λ) ·∆c · d · DPF(λ) + g(λ) (2)

Where ∆c is the attenuation due to the hemoglobin (Hb)
protein, ∆OD(λ) is the change in optical density, ϵ(λ)
is the attenuation coefficient of HbO/R/T at a particular
wavelength (λ), DPF(λ) is the differential path length
factor, d is the source-detector separation distance, and
g(λ) is the scattering coefficient for a given wavelength.
The change in concentration time series data was further
smoothed using an exponential weighted moving average
function such that,

κt =

{
∆ct, at t = 0

α ·∆+ (1− α) · κt−1, otherwise
(3)

Where κt is the exponential weighted moving average of
∆c at time t, and α (= 0.85) is the weighting coefficient.
Cortical positions for the 21 optodes (i.e., 8 emitters and
13 detectors; see Fig. 1 (a)) is determined based on the
10/20 international EEG system using AtlasViewer [58];
see Fig. 2 (a). Further, in the present study, the time-series
data across 30 channels were grouped into eight regions of
interest (ROIs) that were defined based on the functions
of a sensorimotor network from both hemispheres [59],
namely left/right PFC, left/right medial motor area (LM1
and RM1, respectively), left/right lateral motor area (LM2
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Fig. 2. Feature extraction workflow employed in this study.(a) Cerebral oxygenation from fNIRS signal resulted in time-domain fNIRS, and functional
connectivity features. (b) The ECG data resulted in temporal, spectral, and nonlinear HR/V features using the Neurokit2 library [53]. The workflows
feed into a training, and validation pipeline.

and RM2, respectively), and left/right sensory area (LS and
RS, respectively).

3.2.2 Heart rate variability
Cardiac electrical activity was obtained from the ECG
probe and amplifier interface at 1000Hz. The electrodes
were positioned at the base of the sternum and over the
left pectoralis minor muscle. The raw ECG signal was
filtered for motion-related artifacts [60], and corrected for
ectopics with polynomial interpolation [61]. Subsequently,
a peak detection algorithm was used to isolate the R peaks
from the ECG signal [62]. The time between successive R-
R peaks, i.e. the inter-beat-interval (XIBI ) or normal-to-
normal (NN) interval was then derived from the processed
peak signals for subsequent feature engineering.

3.3 Feature extraction
3.3.1 Time-domain fNIRS and functional connectivity
The pre-processed fNIRS signal was subject to participant-
level feature scaling (min-max normalization) to account
for individual differences and consolidated into sliding
windows of size 150, and a step size of 75 which resulted
in 50% overlap between windows. The windows were used

to extract relevant time-domain fNIRS features [63]. These
features were derived for all 30 channels, and signal types
(HbO/R/T), resulting in 12, 980 labeled observations (59
participants ×20 trials ×11 windows) on the knee data, and
the hand data respectively, including Stress and No Stress
conditions. There were 630 unique temporal features (30
channels × HbO/R/T measures × 7 features) in all (see Ta-
ble 1; Fig. 2 (a)). Further, for each window, channel, and sig-
nal type we derived pairwise Pearson correlation statistics
to measure functional connectivity [64] which resulted in
4, 005 additional connectivity features (= (30×3)2/2−90).
The fNIRS feature matrix had 12, 980 observations, with
Xfnirs ∈ R2 having 630 features, and XFC ∈ R2 having
4, 005 features.

3.3.2 Temporal, spectral, and nonlinear HR/V
The corrected inter-beat-interval (XIBI ) obtained from the
continuous ECG signal was subject to participant-level
feature-scaling (min-max normalization) and partitioned
into time windows of 60s with a step size of 30s, resulting
in 50% overlap between windows. Temporal, spectral, and
nonlinear features were then extracted from each window
resulting in 50 features for heart rate and its variability
(HR/V) using the Neurokit2 library [53]. The non-linear
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TABLE 2
Short-term heart rate variability (HR/V) features for each window

(60s) of the filtered ECG signal.

Temporal

Measures of
central
tendency

RMSSD RMS of successive differences
(SD) of NN intervals

SDNN Standard deviation of NN
SDSD Standard deviation of SD

MeanNN Mean of NN
pNN50 Proportion of intervals > 50ms
MadNN Median absolute value of SD
CVNN SDNN/MeanNN
CVSD RMSSD/MeanNN
TINN Base width of NN histogram
HTI HRV triangular index

IQRNN Inter-quartile range of NN

Spectral

Power
density

ULF
VLF
LF

Ultra low (0 – 0.0033Hz)
Very low (0.0033 - 0.04Hz)
Low (0.04 – 0.15Hz)

HF
VHF

High (0.15 – 0.4 Hz)
Very high (0.4 – 0.5 Hz)

Nonlinear

Poincaré
geometry

SD1,2 Transverse and longitudinal
variability of poincaré plot

CVI Cardiac vagal index
CSI Cardiac sympathetic index

Asymmetry
SD1d, a Short-term deceleration (d)

and acceleration (a)
C1d/C2d
C1a/C2a

Contribution of HR d, a on
short-term, and long-term HR/V

SDNNd/a Total variance from d
or a changes

Fragmentation

PIP Percentage of inflection points

IALS Inverse of average length of a,
d segments

PSS Percentage of short segments

PAS Percentage of NN intervals
in alternating segments

Complexity ApEn Approximate entropy
SampEn Sample entropy

* NN = Normal to Normal interval (ms); F = frequency (Hz).

features were further categorized as measures of asym-
metry [65], fragmentation [66], complexity and geometry
[67] (see Table 2). The composite HR/V feature matrix
XHRV ∈ R2 had 1, 300 labeled observations with 50 fea-
tures each; see Fig. 2 (b).

3.4 Machine learning

3.4.1 Ground truth definition

Ground truth for each observation was derived from sali-
vary cortisol samples and self-reports (STAI) taken during
the experiments. Pair-wise t-tests on pre- and post-TSST
cortisol measures confirmed a significant increase in cor-
tisol levels after the stress-induction period (p = 0.049).
This finding also concurred with STAI statistics that point
to elevated state-anxiety after the TSST exercise (p = 0.026).
Hence, we used two class labels — Stress or No Stress.

Fig. 3. Stress detection accuracy of each model on fNIRS, and HR/V
based features. The parametric Quadratic Discriminant (QDA), and the
non-parametric Random Forest (RF), and k-Nearest Neighbors (kNN)
models performed well across all data.

Observations from the pre-stressor phase were labeled as No
Stress, while observations from the post-stressor phase were
labeled as Stress (see Section 3.1.1). This labeling strategy
followed the scientific consensus around the TSST protocol,
where the effects of stress are instantaneous and known to
persist for at least 10 minutes after the induction period
[68]. Secondly, although the experiment protocol comprised
of rest and contraction events, post-hoc sensitivity testing
showed that these states do not substantially influence
model outcomes.

3.4.2 Model training and optimization
Using the labeled data set, we built a machine learning
pipeline to train, optimize parameters, and evaluate nine
machine learning algorithms on fNIRS and HR/V data
independently. We used 10-fold, stratified, cross validation
on the data, with 75% of participants in training, and the
remaining as a ”hold out” test set in each fold to avoid the
bias of highly correlated samples coming from the same
participants [69]. We optimized for accuracy by tuning a
subset of hyper-parameters in each model using a grid-
search process. Here accuracy was defined as,

accuracy = E
[
ε(ypred, yground truth)

]
(4)

where, E is the expected value (mean) of the error (ε)
when ypred ̸= yground truth. The observed accuracy, and
optimization targets for each model are provided in Table
3. All models were developed using scikit-learn 0.23.2 on
Python 3.7.8. In subsequent discussion and tables we report
the mean cross-validated testing accuracy and the standard
error of the mean (SEM) unless otherwise indicated.

3.4.3 Model evaluation and selection
We evaluated the models with accuracy as our metric
and contrasted the top performing model using the 5 × 2
CV paired t-test method proposed in [70]. Overall, most
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TABLE 3
Mean 10-fold CV accuracy (±std) across selected algorithms and their
optimized hyper parameters with independent training on fNIRS and

HR/V data set from hand-grip exercises

Algorithm Params. Accuracy (%)

fNIRS HR/V

kNN k = 3 0.941±0.005 0.813±0.027
L-SVM c=10 0.773±0.013 0.638±0.042
RBF-SVM c=10, γ = 0.1 0.551±0.000 0.882±0.012
GP kernel=1*RBF(0.5) 0.448±0.000 0.885±0.021

DT

criterion = gini,
max depth = 50,
min samples split = 2,
min samples leaf = 2,
max features = ‘auto‘

0.647±0.015 0.0697±0.036

RF

n estimators = 300,
criterion = gini,
max depth = 50,
min samples split = 2,
min samples leaf = 5,
max features = ‘auto‘,
bootstrap = False

0.845±0.005 0.806±0.021

AB α= 0.75 0.695±0.012 0.712±0.028
NB — 0.645±0.013 0.659±0.032
QDA reg param = 0.4 0.922±0.079 0.855±0.031
∗kNN = k-nearest neighbors; L-SVM = linear support vector machine;
RBF = radial basis function; GP = gaussian process; DT = decision
tree; RF = random forest; AB = adaboost; NB = naive bayes’; QDA =
quadratic discriminant analysis; k = No. of neighbors; c = penalty; γ =
similarity radius; α = learning rate.

algorithms had a classification accuracy substantially better
than chance across the two data sets (see Table 3 and Fig.
3). Among them, the k-Nearest Neighbors (kNN), Random
Forest (RF), and the Quadratic Discriminant (QDA) per-
formed the best across both fNIRS and HR/V data sets
with a mean accuracy of 0.903 ± 0.006 and 0.825 ± 0.027
respectively. We found that QDA outperformed RF and
kNN models on HR/V data with p-values of 0.026, and
0.038 (pre-determined threshold of 0.05). On fNIRS data
both QDA and kNN methods outperformed the RF model.
For the remainder of the analysis we focus on the QDA re-
sults given its observed balance of accuracy, interpretability,
complexity, and classification efficiency.

3.4.4 Model comparisons and feature importance analysis
On selecting QDA as our algorithm of choice, we trained
separate models to assess classification performance across
– i. feature (Xfnirs, XFC , XHR/V ); ii. sex (male, female);
and iii. exercise-related (hand or knee data) variables. The
mean classification accuracy for each model and training
combination is reported in Table 4. In our comparisons,
we explicitly train and evaluate models within sex or
exercise-specific data subsets and in turn, evaluate model
generalizability by testing across those subsets (see Table 4).
Furthermore, we quantified the variables of importance for
each model using a permutation importance index, where

we iteratively replaced each variable in the feature set (D)
with random noise, and tracked changes in model accuracy.

Consider the model m a product of cross-validated
training on D = {(x⃗i, yi) | i = 1 : N} where D ∋
(Xfnirs, XFC , XHR/V ), let s be the accuracy of the
classifier m when trained on D. For each feature j ∈ D, we
randomly shuffle the jth column in D to generate an altered
data set Dj . We repeat this process K times to generate a
randomized combination Dj,k for each iteration. We then
determine the accuracy of model m on the altered data set
to obtain an updated accuracy score sj,k for feature j on
the kth shuffle. We define an importance measure ij for the
chosen variable as follows:

ij = s− 1

K

K∑
k=1

sj,k (5)

This score, effectively the mean classification error on permu-
tation, is used to rank feature importance across models.

4 RESULTS AND DISCUSSION

4.1 State estimation with fNIRS

We found that the Xfnirs features enabled a stress clas-
sification accuracy of 98.06 ± 0.4% with a specificity of
99.04%, and sensitivity of 96.23% across combinations of
the input data set when trained, and tested within subsets.
Table. 4 shows the pairwise train-test accuracy across fea-
ture, sex, and exercise-type distinctions, where the rows
indicate the training data, and the columns indicate the
test data, therefore, each cell presents the classification
accuracy for a model trained on the row-header, and tested
on the column-header. We rely on accuracy as our metric
for discussion given the balance in our data set and the
stratified evaluation process. Furthermore, the accuracy
observed here compared favorably with prior work that
involved the use of brain hemodynamics (e.g. [32], [71]) —
this is notable especially given the relative simplicity of the
QDA algorithm and our probemap which was not focal
to brain regions typically associated with human stress
response.

The PFC is responsible for top-down executive control
and our highest order of cognitive functions, and is the
region most sensitive to detrimental effects of stress with
both functional and structural changes over time [72]. In
our study we employed a probe configuration (see Fig.
1 (b)) primed toward the motor cortex, with only four
channels on the PFC. We found that this did not hinder
our classification accuracy. Interestingly, channels from the
PFC region were not significant to outcomes altogether,
we retained a cross-validated classification accuracy of
97.42 ± 0.004% on explicitly removing them from our
training pipeline. Fig. 4 (a), and (b) provide an overview of
the observed accuracy when relying on features from the
ROIs introduced in Fig. 1 (c), here, sex and exercise-related
differences are apparent.
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TABLE 4
Accuracy across temporal fNIRS features, functional connectivity (FC) features, and HR/V indices respectively. The rows indicate the training

data, and columns indicate the test data, therefore each cell indicates the testing accuracy for a model trained on the row-header, and tested on
the column-header. For diagonal elements we report a mean 10-fold, cross-validated accuracy when using a 75-25 train-test split, for

off-diagonal elements we report the mean accuracy from testing on the relevant subset using the 10 trained models with SEM ∈ [0.0001, 0.07] .

Hand Knee
All Female Male All Female Male

fNIRS

Hand
All 0.978±0.005 0.991 0.987 0.456 0.398 0.523

Female 0.764 0.993±0.004 0.521 0.414 0.328 0.512
Male 0.766 0.543 0.994±0.004 0.406 0.342 0.478

Knee
All 0.530 0.510 0.552 0.945±0.005 0.975 0.946

Female 0.526 0.518 0.533 0.797 0.988±0.005 0.574
Male 0.538 0.515 0.562 0.661 0.369 0.985±0.003

FC

Hand
All 0.790±0.004 0.668 0.644 0.462 0.463 0.461

Female 0.644 0.775±0.003 0.500 0.500 0.488 0.516
Male 0.590 0.490 0.758±0.005 0.468 0.456 0.481

Knee
All 0.485 0.483 0.488 0.810±0.002 0.824 0.735

Female 0.487 0.483 0.481 0.764 0.824±0.004 0.725
Male 0.486 0.483 0.488 0.735 0.823 0.797±0.003

HR/V

Hand
All 0.751±0.05 0.800 0.748 0.625 0.615 0.636

Female 0.760 0.819±0.04 0.656 0.604 0.574 0.637
Male 0.759 0.719 0.802±0.05 0.643 0.635 0.652

Knee
All 0.684 0.700 0.662 0.689±0.06 0.716 0.721

Female 0.684 0.703 0.659 0.725 0.753±0.04 0.661
Male 0.679 0.691 0.665 0.686 0.621 0.733±0.05

Between sexes, we found that Xfnirs enabled consistent
state estimation for models trained and evaluated within
each subset with a mean accuracy of 99 ± 0.31%. When
evaluating the model across sexes the mean accuracy re-
duced to 53 ± 0.10%, with poor classification in both
directions i.e. for models trained on males and evaluated on
females or vice-versa. In addition, the models were found
to be highly sensitive to the the exercise-type involved —
accuracy when trained and evaluated within the hand-grip
data subset was 97.81 ± 0.56%, while that within the knee-
extension subset was 94.56 ± 0.54%. When evaluating
across exercises, i.e. training on the hand subset and testing
on the knee subset or vice-versa, the classification accuracy
was poor bidirectionally with a mean value of 41 ± 0.16%.

4.1.1 Relevant brain regions
We used the permutations of importance measure intro-
duced in Section 3.4.4 on each model to identify ranked
regions of importance as shown in Fig. 4 (c). The top fifty
model features were selected and mapped to the 10/10 EEG
space contingent on the channel they were sourced from.
Each coordinate received a measure which was the mean
value of the importance index (ij) of all features derived
from that region. With this approach we observed that fea-
tures from bilateral medial regions of the motor cortex ap-
pear significant to outcomes on hand data, and left-lateral
ventral regions appear significant to outcomes with knee
data, with a mean error increase of 15.23% and 17.84% on

permutation respectively. Further, the four channels located
on the frontal lobe, a region more consistently associated
with stress and its cognitive underpinnings, were not co-
herently relevant to classification outcomes. We observed
that in males, the medial frontal region resulted in a mean
error increase of 9.46% on permutation, while in females
it resulted in a marginal mean error increase of 0.15%.
Conversely in females we found a greater contribution
from the medial PFC when using knee data with a mean
error increase of 6.52% on permutation, while remaining
negligible in males with a mean error increase of 0.0027%.

4.1.2 Functional correlations
In this section, we present the results of our classification
attempts when relying on multi-channel, time-series corre-
lation metrics Section 3.3.1. We obtained a mean state detec-
tion accuracy of 79.27 ± 2.39% for models trained within
data subsets using XFC . Across exercises we observed a
classification accuracy of 79.03 ± 0.42% with hand data,
and an accuracy of 81.06 ± 0.21% with knee data. On
validation across the sexes, we obtained a mean accuracy
of 49.32 ± 0.17% in hand data and a mean accuracy
of 77.42 ± 0.56% for knee data under consistent input
conditions.

Overall, XFc appeared to be less sensitive to the stressor
than Xfnirs, we found a decrease in model accuracy of
≈ 20%. Unlike with XfNIRS , we observed that on knee
data, models trained with connectivity features generalized
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Fig. 4. Stress detection accuracy across (a) the sexes, and (b) limb types, when relying on Xfnirs features sourced from the regions of interest
described in Fig. 1. (c) The permutations of importance score was mapped to 10/10 EEG coordinate-space to determine regions of importance
from the fNIRS probemap. Regions from the medial aspect were significant to outcomes from hand data, while those from the ventral aspect of
the motor cortex were relevant to outcomes on the knee data. The frontal cortex was not coherently important to the classifiers output across the
data.

better than with other fNIRS features with a mean accuracy
of 77.42 ± 0.56% across the sexes. We hypothesized that
this is due to the nature of each activity; the hand-grip ex-
ercises are known to exhibit a relatively distributed cortical
footprint, while the knee-extension task recruited a focused
muscle group and therefore a limited cortical footprint,
perhaps resulting in differences that transcend sex-specific
neural activity under cognitive stress. This hypothesis is
visually supported by the connectivity feature importance
maps shown in Fig. 5, where the network density is focal
with knee data while diffuse and distributed for hand data.
Prior research supports this idea, where central motor and
cognitive structures are known to contribute differentially
to isolated knee and elbow movements (e.g. [73]). However,
future work is needed to assess this hypothesis with more
rigor.

4.1.3 Discussion on stress detection with fNIRS
The results introduced thus far suggest that our algorithm,
workflow, and the temporal fNIRS features are sensitive to
the cortical effects of stress beyond hemodynamic activity
associated with a motor task. Further, although there are
known cortical differences in the representations of motor
activity within the fNIRS signal [74], the findings show
that this does not hinder the classifier’s sensitivity to stress
states. In some ways, the cognitive effects of the stressor
exhibit a form of motor-task independence — where motor
actions do not interfere with cortical representations of
stress identified by the trained models.

However, we also note that models trained on Xfnirs

features do not generalize well across sex or exercise-
related variables; we believe that this is tied to the sen-
sitivity of temporal hemodynamics to both motor-activity
and demographic differences [43]. The regions of impor-
tance (see Fig. 4 (c)) further reinforce this hypothesis; we
identified distinct ROIs across the sexes, and a sensitivity
to the limb type engaged during the experiment. However,

with connectivity metrics (XFC ), although we observed
a decrease in overall classification accuracy relative to
Xfnirs, we also note improved generalizability on knee
data. This we believe is explained by the focality of the
knee-extension exercise that was shown to recruit a limited
set of muscle groups, unlike the distributed neuromuscular
footprint of the hand-grip exercises. In some ways, we
find that the nature of the task can alter the sensitivity of
neural indicators to demographic variables, and that this
influence appears to be stronger on connectivity than on
other attributes of the fNIRS signal.

These observations reinforce the view that traditional
region-specific denominations of cognitive constructs (e.g.
stress [72]) and their influence need reconsideration; per-
haps one that transitions into a view of our cortical re-
sources as a distributed connectome, with stress having
broader implications on neural activation than previously
understood. In addition, the lack of generalizability across
sex or exercise-type differences underscores the sensitiv-
ity of model development to those variables, and the
task-specificity of the human neurophysiological stress re-
sponse. These factors are especially relevant to rehabil-
itation programs that target older adults, where motor-
cognitive synergies are known to play a central role across
exercises (e.g. [10], [11]).

4.2 State estimation with HR/V

With temporal, spectral, and non-linear HR/V features
(XHRV ), when relying on a quadratic discriminant we
achieved a mean cross-validated classification accuracy of
76.37± 5.58% within subsets. Between sexes we see a mean
accuracy of 67.16 ± 4.28% across exercise-types. Between
exercise types we see a mean accuracy of 65.72 ± 4.6%
across the sexes. Overall, models built on XHRV features
generalized better than those developed on fNIRS data
across both sex and exercise-related distinctions.
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Fig. 5. Feature importance for functional connectivity measures. Func-
tional connectivity appears to be diffuse, and collectively relevant to the
classifier’s output when using hand data, but focal on knee data.

Among the variables of importance, short term mea-
sures of heart rate asymmetry were found most important,
Poincaré plot geometry measures were next followed by
spectral and temporal attributes. Fig. 6 (a) presents the
feature importance rank for the domains introduced in Sec-
tion 3.3.2, where we found that the feature-groups exhibit
identical levels of importance across each data set, with
nonlinear attributes appearing more prominently in each
subset.

4.2.1 Discussion on stress detection with HR/V

HR/V is a secondary indicator of cognitive state, in that,
the dynamics of inter beat interval are mediated by the
vagal nerve that provides both a functional and structural
link between cognitive processes in the brain and the
stochasticity of heart rate variability [75]. These interactions
represent the balance between sympathetic and parasym-
pathetic activity and in some ways this response is a few
steps removed from its neural origins. Under the effects of
stress, we expect an increased sympathetic footprint due to
the cognitive burden associated with the TSST [76], and
a decrease in parasympathetic tone, however this is not
a zero-sum system and the effects are easily confounded
by perturbations due to physical activity or breathing.
Typically the effects of stress are associated with changes
in the spectral power density over the HF and LF regimes
[77], however in our observations the spectral components
do not appear to strongly influence the classifier’s output.
In fact, operating on just Poincaré plot geometry and heart
rate asymmetry based features we observed a comparable
stress detection accuracy of 78.76± 0.04% (see Fig. 6 (b)).

The Poincaré plot represents the nonlinear fluctuations
of the RR interval over the time course of the experiment,
and is a graphical indicator, where a scatter plot shaped like
an ellipse describes the nonlinear dynamics of heartbeat.
Here, the dispersion of points along the identity line (i.e.,

the major axis of the ellipse) indicates long-term variability
while dispersion along the minor axis indicates short-term
variability [78]. Prior studies suggest that the former is
indicative of parasympathetic regulation [79], while the
latter and the ratio of the two points to sympathetic cardiac
regulation [80]. In our study, we found statistically signifi-
cant differences in SD1 and SD2, i.e. the dispersion along
the major and minor axes respectively, between Stress and
No Stress conditions (p = 0.037 for SD1, and p = 0.048 for
SD2), with a decrease in SD1 and an increase in SD2 post-
stressor, which agrees with expectations, and explains the
ability of the models to separate the two classes.

Heart rate asymmetry variables are also tied to sym-
pathovagal balance control, where increased sympathetic
activity does not occur concurrently with vagal withdrawal
resulting in a time lag or time asymmetry in heart rate.
Prior studies (e.g. [81]) reported that acute mental stress
results in elevated HRA which supports its relevance as an
index of stress in our data set. There are some advantages
to the use of nonlinear measures; the empirical evidence
that connects spectral and temporal HR/V characteristics to
sympathovagal balance often rely on longer time-windows
(5 min. - 24 hrs), and are suspect as short-term measures
[67]; nonlinear HR/V indices provide a richer template to
explore beat-to-beat fluctuations under limiting conditions
(E.g. window size), but require larger empirical studies
toward wider adoption and relevance.

In our workflow, we make accommodations to account
for activity related changes in the cardiac response, and our
findings reflect the sensitivity of the underlying signal to
the effects of stress beyond those influences. The improved
generalizability of HR/V indices is not surprising given
broader systemic change during the tasks, the nature of the
response, and the non-focal characteristics of vagal nerve
regulation, unlike the correlation and activation dependent
attributes of the fNIRS signal. Another attractive property
of HR/V based indices is the fieldability of the sensing
instrument, between fNIRS and ECG devices, most research
grade ECG sensors tend to be unobtrusive which make
them an attractive prospect for the extension of dry lab
models toward naturalistic settings.

5 CONCLUSIONS

We explored stress detection on older adults engaged in a
motor task using brain hemodynamics (fNIRS) and heart
rate variability (ECG). To this end, we built a machine
learning workflow that enabled independent model de-
velopment and validation across demographic (sex) and
activity (limb type) variables. Further, we contrasted the
efficacy of physiological and neural biomarkers along the
same dimensions.

In general, we found that temporal characteristics of
cerebral hemodynamics, connectivity measures, and heart
rate variability are independently sensitive to the stressor,
with a mean classification accuracy of ≈ 97%, 78%, and
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Fig. 6. (a) Variables of importance from the HR/V data set based on the permutations of importance index introduced in Section 3, where measures
are grouped together based on their source – (i) Poincaré plot geometry, (ii) heart rate asymmetry, (iii) fragmentation, (iv) complexity, (v) spectral,
and (vi) temporal characteristics. (b) Stress detection accuracy when relying on specific sections of the HR/V feature space. Nonlinear features
appear to be consistently sensitive to the effects of stress above and beyond other attributes across the sexes (TOP), and limb types (BOTTOM).

72% respectively for models trained and tested within sexes
or experiment conditions. Our findings suggest that the
physiological and neural indices identified in this study are
indeed representative of the neurophysiological changes
that accompany stress-induction and its after-effects in
older adults. Importantly, we found that neural effects of
stress are not restricted to the frontal areas of the brain, and
that probemaps focused on the motor cortex remain respon-
sive to the effects of mental stress. Further, we found that
a simple quadratic discriminant was sufficient to separate
the two states.

However, we note that these models do not generalize
well across demographic or activity variables. Notably,
features that represent the cerebral hemodynamic response
appear to be strongly influenced by sex, and limb-type
distinctions, with accuracy no better than random chance
when evaluating across subsets. Functional connectivity
measures on the other hand had one exception to this
trend, where, on knee data we found that the models
performed equivalently across both sexes. We believe that
focused motor activity can override sex-specific neural
differences due to a cognitive stressor, which further under-
scores the challenge of task-specificity in the model devel-
opment process. In contrast, HR/V based measures were
seen to transfer well across both demographic and activity
variables, however, the overall classification accuracy was
lower than their neural counterparts. These observations
are significant to sensorimotor rehabilitation programs for
older adults, where robust stress-detection workflows can
play an instrumental role in mapping task demands to
patient cognitive states, and in enabling adaptive exercises
that promote accelerated recovery.

In summary, we observed that, (i) demographic and
activity variables do influence model sensitivity to stress,

but the extent of this effect is specific to the nature of
the sensing modality, where temporal neural indices were
more susceptible to these differences than connectivity or
secondary physiological indices (e.g. HR/V); and (ii) on
the whole, we observed a motor-task independence, where
actions in the motor domain did not obscure the neural
or physiological representations of stress. Although these
observations indicate positively toward stress detection
in older adults, there remain some key limitations which
demand our attention to foster real-world solutions; they
are discussed in the section to follow.

5.1 Limitations and future work

First, the fNIRS instruments in use today remain cumber-
some for any real world stress detection, although they per-
mit ambulatory use, they are obtrusive and some users may
find the probes uncomfortable or painful when worn for
long time periods. Optimized probemaps, with a minimal
footprint may offset this issue in practice; our observations
that found relevance in the motor cortex toward stress
classification highlights this possibility.

Second, our inferences are limited by the experiment
protocol. While we employ a motor-intensive task, the
neurophysiological representations of these tasks are only
partially representative of real world behaviors due to our
instruction, the environment, and the overall participant
experience; therefore the benefits of this workflow are
primarily relevant to controlled rehabilitation programs.
Wider testing with larger, ecologically valid, data sets could
enable a path towards true task-agnosticity. Additionally,
the post-stressor state is an aggregation of participant ex-
perience over the pre-stressor states and the TSST which in
our demographic could add to the overall discriminability.
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Third, while we explore the under-represented dimen-
sions of sex and age, recent trends point to the need for
personalization (e.g. [45]), nevertheless, our observations
remain a valid extension of previous efforts on stress-
detection in older adults under dual-task demands.

Fourth, we explore stress detection in an offline setting
that involves task and sensor-specific processing, however
the compatibility of these methods toward online stress
detection requires further investigation.

Finally, our study was limited to data from a senior
population, therefore the transferability of the models to
a wider age group remains suspect. Aging is known to
perturb our neurophysiological responses, however, our
protocol explicitly considers stress and no stress condi-
tions within the participant pool of older adults; therefore,
providing confidence to the overall stress detection ability,
above and beyond aging related factors within our demo-
graphic.

In conclusion, the synergistic interactions between mo-
tor task and cognitive stress have long remained un-
resolved and this research offers a potential window
into those interactions. We believe that with improve-
ments in fNIRS hardware, multimodal explorations that
include temporal hemodynamics, functional connectivity,
and HR/V based measures offer a robust solution to the
stress detection problem in older adults, especially in the
context of sensorimotor rehabilitation.
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