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BACKGROUND 
 

New advancements in technology have allowed for 
major improvements in a multitude of industries such as 
healthcare, rehabilitation, and gaming. While these 
advancements have aimed to decrease the number of errors 
that have occurred (Bernstein McCreless and Cote, 2007), 
some of these advancements can introduce new challenges. As 
an example, minimally invasive surgery (MIS) has been a 
breakthrough in surgery that allows surgeons to operate with 
minimal incision and decreases the time needed for recovery 
of a patient (Gerhardus, 2003). However, a major tradeoff of 
minimally invasive surgery is the reduction of complex 
movements a surgeon is able to perform using a robotic 
system when compared to their own hands (Sastry, Cohn, and 
Tendick, 1997; Taylor et al, 2016). Given such trade-offs and 
cascading effects, it is vital to investigate different feedback 
modalities and their implications on tasks. 

Several feedback modalities can be utilized to aid task 
performance ranging from visual (Gallagher et al, 2005), 
auditory (Basta et al, 2008), haptic (Petzold et al, 2009) or 
multimodalities of feedback (Sigrist et al, 2013). Recent 
research has found that feedback can aid in gaming (Tsai et al, 
2015), rehabilitation (Kapur et al, 2009), and surgical tasks 
(Bethea et al, 2004). While several studies found benefits of 
feedback on specific tasks (Bethea et al, 2004; Kapur et al, 
2009; Tsai et al, 2015; Sigrist et al, 2013; Petzold et al, 2009), 
some suggest haptic feedback does not provide a benefit when 
provided concurrently during a task (McMahan et al, 2011). It 
is difficult to design a system to deliver a feedback for a 
specific task because the feedback cannot be generalized 
across a population (Sihvonen et al, 2004; Moualed et al, 
2011), instead, individualization is needed to determine what 
the best feedback is for an individual rather than a group.   

Performance is not limited to technical competence 
(Datta et al, 2001). As an example, a surgeon’s performance 
can be evaluated by their patient’s outcome after surgery 
(Pusic et al, 2009), surgical dexterity (Datta et al, 2001; Reiley 
et al, 2010), and time for completion of the operation (Datta et 
al, 2001). While there are efforts investigating cognitive and 
physiological factors in isolation, holistic approaches to 
consider both and evaluating the interactions between them is 
lacking (Guadagnoli & Lee, 2004), gaps in research need to be 
filled to determine just what feedback is most beneficial to 
help aid in complex tasks, such as surgery. With numerous 
advancements in technology, many of these advancements 
have a variety of feedback mechanisms that can be delivered 
to an individual in order to determine when an error is about to 
be made and correct for that error. 

 
METHODS 

 
Ten novice participants performed a 3D gripping task in 

a virtual tracking environment across four experimental 
conditions (visual + no mental arithmetic, visual + haptic + no 
mental arithmetic, visual + mental arithmetic, visual + haptic 
+ mental arithmetic), that manipulated error correcting 
feedback modality (visual vs visual + haptic) and added 
cognitive stress (no mental arithmetic vs mental arithmetic); 
the protocol was repeated twice to test the effects of time. 
Performance on the task, participants’ heart rate (HR) and 
heart rate variability (HRV) responses, performance metrics 
(proximity, precision, and mean error), and perceived overall 
workload using NASA TLX was obtained for each condition. 
 

RESULTS 
 

Separate three-way mixed factors analysis of variance 
(ANOVA) was conducted to test the main and interactive 
effects of feedback, cognitive stress, and time on task 
performance metrics, HR and HRV responses, and NASA 
TLX ratings. Post hoc analyses were conducted where needed. 
The level of significance was set up at alpha = .05. 

The performance metrics, mean error, and proximity and 
precision scores, were not found to be significantly affected by 
feedback (all p’s > .186). Cognitive stress was found to 
significantly lower the proximity score (p < .01), however no 
differences of stress were found on the mean error or precision 
scores (both p’s > .434). Finally, a marginal positive effect of 
time was found on mean error (p = .079) and precision scores 
(p = 0.072. No two- or three-way interactions between 
feedback, stress, and time were found on any performance 
metrics (all p’s > .102).  

Mean HR was significantly influenced by feedback (p < 
.05), and cognitive stress (p < .01). Higher HR responses were 
found during visual feedback than during visual + haptic 
feedback and under the cognitive stress condition than the 
control condition. No significant effects of time, or any two- 
or three-way interactions of feedback, stress, and time were 
found (p > .100). 

Mean rMSSD of r-r data was significantly higher with 
visual + haptic feedback (p < .01) when compared to visual 
feedback alone. A significant interaction (p < .05) between 
feedback and cognitive stress was observed; the presence of 
the cognitive stressor, when compared to the absence of this 
stressor, resulted in a higher rMSSD value in the visual + 
haptic feedback condition, while no difference of the stressor 
was observed in the visual feedback condition. No significant 
main effects of cognitive stress or time or any two- or three-
way interactions were observed on rMSSD (all p’s > .5), 
shown in Figure 1a.   
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Figure 1.  rMSSD (a) and LF/HF (b) components of HRV across the feedback 
and stress conditions (pooled across time). Error bars denote SE and * 
indicates significant differences between stress conditions. 
 

Main effects of feedback, stress, or time did not affect 
LF/HF values of HRV (all p’s > .327). However, a significant 
interaction (p < .01) between feedback and stress was 
observed; significantly higher LF/LF values were observed 
during stress, compared to the control conditions, in the visual 
feedback conditions, shown in Figure 1b. However, 
significantly lower LF/HF values were observed during the 
stress conditions in the visual + haptic conditions than during 
the control conditions. No significant interaction effects of 
feedback, stress, or time were found (p’s > .300). 

Overall workload score did not differ significantly 
between the feedback and time conditions (both p’s > .192). 
However, participants reported greater workload during the 
cognitive stress condition than the control condition (p < .01). 
Finally, no two- or three-way interactions of feedback, stress, 
or time were found (all p’s > .536). 

 
DISCUSSION 

 
The aim of this study was to determine if feedback type 

(visual or visual + haptic feedback) has an effect on 
physiological (i.e heart rate/heart rate variability) and 
perceptual responses associated with task performance, 
particularly under additional cognitive stress and over time. 
Key findings of the present study are 1) comparable 
performances were observed between visual and visual + 
haptic feedback conditions; 2) HR and HRV responses 
indicated lower physiological load in the visual + haptic 

condition when compared to visual feedback alone, 
particularly under stress; and 3) no learning or habituation was 
found on any study measures over time.  
 Haptic feedback has been found to be beneficial in aiding 
performance during complex tasks, such as surgical tasks 
(Diaz et al, 2014; McMahan et al, 2011) by quickening 
completion time (Tavakoli et al, 2006), reducing response to 
signaled errors (Diaz et al, 2014), and improving 
concentration (McMahan et al, 2011). In the present study, 
haptic feedback was not associated with lower performance 
nor did it change over time. As expected stress negatively 
affected performance. Interestingly, the effect of stress on 
performance was found to be similar across both feedback 
types, which may suggest that haptic feedback might be 
beneficial for tasks associated with high stress, such as 
surgeries. 
 HR and HRV can be quickened by stimulation of the 
sympathetic nervous system through a release of epinephrine 
(Hainsworth, 1995). An increased rMSSD suggests an 
increase in parasympathetic activity (Saleem et al, 2012); 
mean rMSSD in the present study was found to be 
significantly higher for visual + haptic feedback than visual 
feedback alone, suggesting that the addition of haptic feedback 
can potentially decrease stress. Typically, in stressful and 
fatiguing situations increasing HR and LF/HF ratio and 
decreasing rMSSD are expected; results obtained here 
corroborates with these findings. LF/HF ratio was the lowest 
for the stress conditions in the visual + haptic feedback 
condition, which indicates that stress was lower during these 
conditions. According to multiple resource theory, the brain 
has limited resources that are used for varying tasks (Wickens, 
1980), and when more than one resource is used in a single 
task overburdening occurs, causing performance to decrease 
(Basil, 1994). It is possible that the haptic feedback aided in 
ease of performing mental arithmetic since participants could 
now rely on haptic feedback while performing math (that 
burdened the visual cognitive resources). 

 While the NASA TLX score did not differ between 
feedback modalities stress condition (mental arithmetic) was 
verified as a cognitive stressor because of the higher reported 
workload scores than the control (no mental arithmetic). This 
finding, along with the physiological responses obtained, 
emphasizes that error-correcting haptic feedback does not 
cognitively or psychological burden users when performing 
precision motor tasks.  
 

CONCLUSION 
 

Key findings of the present study are 1) comparable 
performances were observed between visual and visual + 
haptic feedback conditions; 2) HR and HRV responses 
indicated lower physiological load in the visual + haptic 
condition when compared to visual feedback alone, 
particularly under stress; and 3) no learning or habituation was 
found on any study measures over time. These findings 
highlight the resilience of haptic feedback modality 
augmented with visual feedback in application domains that 
are associated with high stress.  Major limitations of the study 
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include small sample size, unilateral motor actions, and 
generalizability of study findings based on participant pool. 
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