
Introduction Baseline measures as performance indicators

A framework for personalization

Personalization in learning and delivery mechanisms can advance

sensorimotor training outcomes across domains and user types. In

this work we introduce a framework to support and evaluate

personalization within virtual reality (VR) based systems.

• Rationale: Human sensorimotor learning has several dimensions,

and VR enables an embodied training interface to promote useful

behaviors.

• Hypothesis: Personalization driven by performance,

neurophysiological, and behavioral (PNB) data can accelerate

learning. This personalization can be proficiency- or deficiency-driven,

with adaptation at baseline or downstream resulting in better

outcomes.

• Approach: This work is mostly prospective, where we present

evidence of using baseline PNB data for predicting performance

behaviors in one VR context and discuss how that could carry forward

towards a generalizable framework for adaptation.

Fig. 1: Schematic representation of a technology-agnostic framework for

personalization, and adaptability across learning environments and objectives.

Fig. 4: The machine learning workflow used takes a supervised

approach where observations are labeled based on a composite

performance score that includes completion time, and response

correctness.
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Fig. 5: Drone flight training in VR using a real-world RC controller. (a)

Trajectory differences between high, and low performers. (b) Instrumented

participant (RIGHT). (c) Training stages with learning objectives (LO).

VR training on firefighters

Fig. 2: (a) The experiment workflow during the VR valve sequence execution

task. (b) Snapshot of an instrumented participant (RIGHT).

Forty participants were recruited from the Bryan-College Station Fire

Department, who were cast into stress learning and control learning

groups within a single-blind experiment protocol.

Personalization for human learning can build on three key elements:

1. Actionable metrics that determine need for personalization

2. Adaptable elements within a learning environment or interface

3. A guiding strategy to facilitate personalization or adaptations

VARIABLES OF IMPORTANCE

GROUP ACCURACY (%) PRECISION RECALL

CONTROL 86.21 78.24 71.18

STRESS 67.74 62.14 58.14

OVERALL 71.04 71.16 64.13

Table 1: User stratification based on baseline gaze data. All measures

indicate mean values from the cross-validated output.

Towards generalizability

Fig. 4: Permutation importance scores for the top nine model variables used

by the cross-validated model. Gaze entropy and camera position-based

features were identified as key components for performance stratification.

The task entailed distinct encoding, 

retention and recall phases, with 

audiovisual perturbations. 

1. Performance: Correctness, time

2. Neurophysiological: fNIRS, ECG, EDA, 

eye and head movement

3. Behavioral: Subjective questionnaires 

between trials, and between levels 

subjective responses
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Drone flight trajectory with event recognition

1. This framework is now being explored across technology and task 

domains on an NSF convergence accelerator-driven project.

2. Brain-metrics in an offline sense can enable state-driven 

personalization.

3. Further explorations underway to determine the efficacy of macro

or micro-adaptations.
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