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ABSTRACT
All people cope with mental stress from time to time. Stress can
affect our emotional and physical health, which can lead to physical
and/or mental health issues. Our experiment aimed to derive the
stress levels of 57 older adults from the electrocardiogram (ECG)
signal during a lab study that involved a hang-grip strength task.
This experiment bridges the gap between previous studies by clas-
sifying the mental stress state of older adults while performing a
motor task before and after the stressor was induced. In this study
heart rate and heart rate variability multi-dimensional features in
the time-, and frequency-domain are extracted and an optimized
Artificial Neural Network (ANN) created to identify two states —
stress, or no-stress. We achieved accuracy of 90.83%.
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1 INTRODUCTION
The world’s population is aging rapidly. According to the World
Health Organization 1, between 2015 and 2050, the proportion of
the world’s older adults is estimated to almost double from about
12% to 22%. In the United States older adults often continue to work
after retirement [7]. It has been noticed the labor force participation
for this age group has been increased in recent years [13]. However,
the prevalence of stress among elderly people is increasing, and
the physical and cognitive changes some people experience as they
age can make this issue even more challenging [18]. Therefore, the
need to monitor mental stress especially under work conditions is
crucial to avoid health issues.

The electrical activity of the heart has beenwidely used to predict
stress. The most common stress predictors from the ECG signal is
heart rate (HR) and heart rate variability (HRV) [16]. Heart activity
reflects the Autonomous Nervous System (ANS) balance or the
imbalance in our body. Stress plays a major role in the balance of
our ANS [10]. HRV is based on the variations between heartbeats
(RR intervals) and it has been proven to be a reliable indicator of
the autonomic nervous system’s activity [11].

In recent years, several studies have been conducted on the
detection of stress. HR and HRV features were utilized to train
machine learning algorithms to classify stress levels. In the work of
Fan et al. (2019), ECG data were collected from 15 participants under
a mentally relaxed and stress state. HRV features were extracted
using 2.5 minutes ECG segments and they achieved an accuracy
of 80.56% using a k-nearest neighbor classifier [5]. Castaldo et al.
(2016) achieved an accuracy of 79% from HRV features extracted
from 3 minutes ECG excerpts using the C4.5 tree algorithm. The
ECG signal was recorded from 42 university students during an
oral exam for the stress state and during vacation for the non-stress
state [3]. In the work of Kashan et al. (2015) ECG data was collected
from 17 participant drivers, where the authors used a random tree
classifier and achieved an accuracy of 88.24% for three levels of
stress: low (initial and rest state), medium (highway), high (inside
the city) [9].

The focus of this study was to classify the mental stress state
(stress, no stress) of the participants while performing a hand-grip
strength task. HR and HRV features were used to classify these
states. The analysis of HR andHRV during amotor task has inherent

1www.who.int/news-room/fact-sheets/detail/aging-and-health
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challenges but we were able to successfully use these features to
classify “social stress” – a stressor that is more prevalent in older
adults. In all the previously mentioned studies the stress state was
classified while the stress elicited, in this study we classified the
stress state of the participant after the stressor was induced, which
increases model classification utility post stressor event.

In this study, HR and HRV features extracted from 1-minutes
ECG signal segments and an Artificial Neural Network (ANN) was
developed to predict different levels of stress on elderly people.
Previous research has shown that HRV time domain and frequency
domain features can be extracted using an ultra-short HRV window.
According to Li et al. (2009) HRV features can be extracted using
a window of size 30 seconds [14]. Also, the work of Salahuddin et
al. (2007) indicates that both time domain and frequency domain
features can be extracted in a 60 seconds window [22]. Our results
indicate that stress levels on the elderly can be successfully detected
from ECG signals using ultra short windows.

2 DATA COLLECTION
This study recruited a total of 57 participants, all of whom were
residents of the local Bryan-College Station community. All par-
ticipants were right-hand dominant, over 65 years in age (mean =
72.76±5.69), and self-reported sedentary lifestyles with occasional
recreational activity. None of the participants reported any known
musculoskeletal injuries or disorders within the past year. Partic-
ipants were designated as non – obese if their body mass index
(BMI) was in the range of 18.5 – 25 kg/m2 while those with BMI >
30 kg/m2 were considered obese. The participants were placed into
four experimental groups – non-obese males (n = 15), non-obese
females (n=15), obese males (n=14), and obese females (n = 15). All
participants were subject to the experiment protocols approved by
Texas A&M University’s Institutional Review Board on providing
written informed consent prior to data collection.

The stress data presented in this investigation derives from a
larger study that entailed a sequence of experiments that spanned
several days. Figure 1 shows the protocol we followed in this study.
Upon informed consent, participants perform a one-handed grip
stress experiment. This experiment protocol consisted of instru-
ment setup, baselinemeasurements for strength (maximal voluntary
contraction (MVC)), salivary cortisol samples, a Trier Social Stress
Test (TSST) [8], and pre/post-stressor hand-grip performance test.
During MVC and subsequent hand-grip experiment procedures,
participants sat upright with their dominant upper arm at their side,
elbows flexed at 90°, and lower arm supported by an armrest. Prior
to the motor task, ECG signal, using a 3-lead chest configuration,
was captured during a baseline period in which participants were
asked to relax without any movement for three minutes.

Following baseline tests, participants grasped a hand dynamome-
ter (BIOPAC, CA, United States) to perform isometric hand-grip
contractions. After a warm-up period of roughly two minutes, par-
ticipants performed three isometric MVCs with two-minute rest
intervals to measure their hand-grip strength. The maximum value
from the three MVC trials was used to determine a target force
level of 30% MVC for the subsequent motor tasks pre-/post-stressor.
Participants were provided familiarization of the hand-grip trials at
30%MVC and adequate rest before starting the next motor task. The

Figure 1: Study Protocol

pre/post-stressor tests required participants to maintain hand-grip
force levels at 30% MVC for 15 s followed by 15 s rest repeatedly
for ten sessions [28]. During this time participants were instructed
to maintain their hand-grip force level as close to the target force
level as possible utilizing real-time visual feedback on a computer
screen.

After the pre-stressor hand grip sessions, salivary cortisol sam-
ples were taken from each participant. Following which partici-
pants were subject to a TSST protocol that entailed extemporaneous
speech, and arithmetic tasks in front of an unfamiliar group of pan-
elists (N=2). Following the TSST, another salivary cortisol sample
was collected from the participants. After this phase participants
were subject to the post-stressor experiment protocol that entailed
a repetition of the 30% MVC handgrip exercise for ten sessions.
Once they terminated the post-stressor task, they performed a post
MVC trial to gauge levels of fatigue associated with the complete
test protocol. In this protocol participant ECG data is acquired at
1000 Hz using a two lead ECG probe, and the BIOPAC ECG100C
(BIOPAC Systems Inc., Aero Camino Goleta, CA, USA) amplifier
interface. The salivary cortisol swabs serve as ground truth to con-
firm elevated stress-levels post-TSST, while the TSST serves as
an accepted, proven stress induction paradigm for human factors
studies.

3 METHODS
Figure 2 shows the steps we followed to accomplish stress classifi-
cation from ECG signals. Data segmentation, data preprocessing,
feature selection, feature extraction, model optimization, and model
evaluation are explained in detail in the following sections.

3.1 Data Segmentation
In this study, the pre stressor test serves as the no-stress state
and the post stressor test as the stress state. The total duration of
each state for each subject was approximately five minutes. The
next step was to segment each state in windows to extract the
HR and HRV features for every participant. Each stress level was
segmented using a window size of 60,000 (one minute) data points
which corresponds to the amount of data copied from the ECG
signal to our window.

3.2 Data Preprocessing
R–R interval time series obtained from the continuous ECG signal
by detecting each QRS complex for every window we created at the
segmentation process. Also, the normal-to-normal (NN) intervals
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Figure 2: Stress Level Classification Procedure

that contained only R-R intervals computed from sinus node de-
polarizations was determined [17]. Furthermore, power spectrum
computation was performed using a nonparametric, signal repre-
sentation technique (wavelet transform). Wavelet Transform is a
time-frequency analysis method. In this study, we applied Wavelet
Transform to scale the decomposed ECG signal into different fre-
quency band signals. After we eliminate the noises the ECG signal is
reconstructed using only the useful parts of the original signal [1].

3.3 Feature Extraction
After segmented and processing the data HR and HRV features
were extracted from the ECG signal for each window.

3.3.1 Heart Rate Features. Heart rate features. From Heart rate we
extracted two features in total:

(1) HR_mean: The mean heart rate.
(2) 2. HR_std: The standard deviation of heart rate.

3.3.2 Heart Rate Variability Features. HRV features were extracted
using two different methods: time-domain methods, frequency-
domain methods [15, 20, 24, 27, 29].

Time Domain Features. In total, we extracted 9 features:
(1) sdNN: The standard deviation of the time interval between

successive normal heartbeats.
(2) meanNN: The mean RR interval.
(3) RMSSD: The root mean square of the RR intervals during a

period of time.
(4) CVSD: The coefficient of variation of successive differences,

the RMSSD divided by meanNN.
(5) cvNN: The Coefficient of Variation, the ratio of sdNN divided

by meanNN.

(6) medianNN: The median of the Absolute values of the suc-
cessive Differences between the NN intervals.

(7) madNN: The median Absolute Deviation (MAD) of the RR
intervals.

(8) mcvNN: The median-based Coefficient of Variation, the ratio
of madNN divided by medianNN.

(9) pNN50: The proportion derived by dividing NN50 (The num-
ber of interval differences of successive NN intervals greater
than 50 ms) by the total number of NN intervals.

Frequency Domain Features. In total, we extracted 9 features:

(1) VLF: The variance in HRV in the very low frequency (.003
to .04 Hz).

(2) LF: The variance in HRV in the low frequency (.04 to .15 Hz).
(3) HF: The variance in HRV in the high frequency (.15 to .40

Hz).
(4) Total Power: The total power of the density spectra.
(5) LFHF: The LF/HF ratio.
(6) LFn:The normalized LF power LFn = LF/(LF+HF).
(7) HFn: The normalized HF power HFn = HF/(LF+HF).
(8) LFp: The ratio between LF and Total Power.
(9) HFp: The ratio between HF and Total Power.

3.4 Feature Selection
The next step is feature selection. It is very important to choose the
most informative features and at the same time features that elimi-
nate redundant data. This will contribute to reducing the dimen-
sionality and the complexity of the chosen predictive model [21].
Filter methods are very popular in determining the best subset of
uncorrelated features. They are usually very fast, and they are not
computationally intensive [21]. We applied Pearson’s correlation
to determine the highly correlated features. Pearson’s correlation
quantifies the linear dependence between two continuous variables
X and Y. The correlation values vary from -1 to 1. Coefficient values
close to -1 indicate a strong negative correlation. Values close to 1
indicate strong positive correlation and a value close to 0 implies
weak correlation and a value of exact 0 implies no correlation [2].
Figure 3 shows the correlation degree between the features.

Highly correlated features were removed, and the final subset
of features used to build our predictive model includes: HR_mean,
HR_std, RMSSD, meanNN, VFL, VHL, and LFn.

3.5 Optimized ANN for Mental Stress
Classification During a Motor Task.

Artificial Neural Networks can learn from data and generate models
that receive a number of inputs and optimally map them to the
desired outputs. ANNs learn and model non-linear and complex
relationships [19]. Many machine learning algorithms impose re-
strictions on the input features, ANN is not one of them and it
usually performs better with high volatility and non-constant vari-
ance data [4]. This is very important in our application because the
volatility of the ECG signal is very high. After selecting the less cor-
related HR and HRV features we created an ANN. To determine the
best hyperparameters for the neural network we applied the grid
search method with 10-fold cross validation for each combination
of the parameters [26]. Grid search is a brute-force approach where
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Figure 3: Correlation Between Features

every combination of a specified set of hyperparameter values is
tried to find the optimal values for the neural network. In total five
parameters were tuned: number of hidden neurons (range from 1
to 10), activation function for the hidden layer (identity, logistic,
tanh, relu), the solver for weight optimization ( lbfgs , sgd, adam),
learning rate schedule for weight updates (constant, invscaling ,
adaptive ), alpha penalty parameter (0.1, 0.05, 0.02, 0.01), and maxi-
mum number of iterations (100,150,200,250). We concluded that the
optimal parameters for the neural network were achieved using a
one hidden layer network with 4 hidden neurons. The optimal acti-
vation function was tanh, and Adam is determined as the optimal
stochastic gradient optimizer. Also, according to the grid search
method adaptive learning, regularization rate of alpha=0.1, max-
imum iteration= 100 and batch size=16 were selected as the best
parameters for the neural network.

3.6 ANN Evaluation
The dataset that was created from the segmentation and the pre-
process phase was used to test the performance of the developed
ANN. The data set was split in two parts where 80% was used as the
training set and the rest 20% as the test set [12]. The training and
the testing set did not contain data from the same participant. We
calculated the overall accuracy, the precision, recall and F1-Score
of the developed model for the 80/20 training/testing split of the
dataset.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 +𝑇𝑁 )/(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +𝑇𝑁 ) (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑃) (2)

𝑅𝑒𝑐𝑎𝑙𝑙 = (𝑇𝑃)/(𝑇𝑃 + 𝐹𝑁 ) (3)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = weight average of Precision and Recall (4)

Table 1: The Precision, Recall, F1-Score of the ANN Model.

Classes Precision Recall F1-Score

No-stress 88% 95% 91%
stress 95% 87 % 90%

macro avg 91% 91 % 91%

Where TP: True positive, TN: True negative, FP: False positive,
and FN: False negative [25]. Also, a confusion matrix was created
to provide information about the performance of the classification
model and to give an insight on what the neural network mis-
classified [23]. Finally, we performed leave-one-subject-out cross
validation [6] where, one participant was randomly selected for the
testing purposes while the other participants were used for training
the model. This procedure was repeated until all the participants
had been used as test dataset.

4 RESULTS
The overall test accuracy for the 80/20 training/testing split is 90.83%
for predicting two levels of mental stress (“stress”, “no stress”).
Table 1 shows the classification results of the developed ANN. The
precision, recall, and f1-score for the no-stress state are 88%, 98%,
91% respectively. For the stress, the the precision, recall, and f1-score
are 95%, 87%, 90% respectively. The unweighted mean precision,
recall, and f1-score for the two classes is 91%.

Figure 4 demonstrates the performance of the developed ANN us-
ing a confusion matrix for the two levels of stress. The diagonal line
shows the percentage of the correct data our model predicted while
the off- diagonal boxes represent the percentage of the misclassified
labels by the ANN.

Figure 4: Confusion Matrix for the Two Levels of Stress

The mean accuracy of the leave-one-subject-out cross validation
is 84.38%. The developed model performed well for the majority of
the participants. The accuracy of thirty-four participants was lying
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between 90% and 100%. The developed model achieved accuracy
from 80% to 89% for nine participants and accuracy from 70% to
79% for six participants. Finally, the accuracy of 5 participants was
lying between 60% and 69% and an accuracy from 50% to 59% was
achieved for three participants.

5 DISCUSSION
In this experiment we developed a laboratory model with known
context labels and tests in the same environment. In order to classify
the mental stress state only the ECG signal was used and only
one machine learning algorithm was tried. Our future work will
include the demographic information (age, body mass index) and
several machine learning algorithms will be used to classify the
mental stress state of an older adult while performing a motor
task. Also, from the leave-one-subject-out cross validation results
we noticed variations in the accuracy across the participants. The
model performed very well for the majority of the participants.
For a small percentage of the participants the accuracy was low,
we assume that the stress induction was less effective to these
participants.

6 CONCLUSION
Mental Stress can negatively affect our health and especially the
health of older adults. Automated stress detection can be proven
very helpful in combating the negative implications of stress, it can
lead to better stress management and can have beneficial effects
in the quality of their life. In this study we developed an ANN to
predict two levels of mental stress in older adults while performing
a motor task. The results demonstrate that our optimized model
can accurately predict stress levels from ECG signals. We achieved
overall test accuracy of 90.83%.

ACKNOWLEDGMENTS
We thank Texas A&M for providing the data and the director of
the Artificial Intelligence and Data science lab at California State
University, Los Angeles Dr. Mohammad Pourhomayoun for the
comments raised from the discussions with him. Research reported
in this publication was partially supported by the National Institute
on Aging of the National Institutes of Health under Award Number
R15AG047553 and from the National Science Foundation under
award number 1900704. The content is solely the responsibility of
the authors and does not necessarily represent the official views of
the National Institutes of Health and National Science Foundation.

REFERENCES
[1] Paul S Addison. 2005. Wavelet transforms and the ECG: a review. Physiological

measurement 26, 5 (2005), R155.
[2] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson

correlation coefficient. In Noise reduction in speech processing. Springer, 1–4.
[3] Rossana Castaldo,WilliamXu, PaoloMelillo, Leandro Pecchia, Lorena Santamaria,

and C James. 2016. Detection of mental stress due to oral academic examination
via ultra-short-term HRV analysis. In 2016 38th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 3805–3808.

[4] Lukas Falat, Zuzana Stanikova, Maria Durisova, Beata Holkova, and Tatiana
Potkanova. 2015. Application of neural network models in modelling economic
time series with non-constant volatility. Procedia Economics and Finance 34 (2015),
600–607.

[5] Jianzhong Fan, Haihui Li, Yu Zhan, and Yajun Yu. 2019. An Electrocardiogram
Acquisition and Analysis System for Detection of Human Stress. In 2019 12th

International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI). IEEE, 1–6.

[6] Yan Gao, Xinyu Zhang, ShouyangWang, and Guohua Zou. 2016. Model averaging
based on leave-subject-out cross-validation. Journal of Econometrics 192, 1 (2016),
139–151.

[7] Michael D Giandrea, Kevin E Cahill, and Joseph F Quinn. 2009. Bridge jobs: A
comparison across cohorts. Research on Aging 31, 5 (2009), 549–576.

[8] DH Hellhammer, C Kirschbaum, and K Pirke. 1993. The ‘trier social stress test’-A
tool for investigating psychobiological stress response in a laboratory setting.
Neuropsychobiology 28 (1993), 76–81.

[9] N Keshan, PV Parimi, and Isabelle Bichindaritz. 2015. Machine learning for stress
detection from ECG signals in automobile drivers. In 2015 IEEE International
Conference on Big Data (Big Data). IEEE, 2661–2669.

[10] Desok Kim, Yunhwan Seo, Jaegeol Cho, and Chul-Ho Cho. 2008. Detection
of subjects with higher self-reporting stress scores using heart rate variability
patterns during the day. (2008), 682–685.

[11] Hye-Geum Kim, Eun-Jin Cheon, Dai-Seg Bai, Young Hwan Lee, and Bon-Hoon
Koo. 2018. Stress and heart rate variability: a meta-analysis and review of the
literature. Psychiatry investigation 15, 3 (2018), 235.

[12] Kristjan Korjus, Martin N Hebart, and Raul Vicente. 2016. An efficient data
partitioning to improve classification performance while keeping parameters
interpretable. PloS one 11, 8 (2016), e0161788.

[13] Braedyn Kromer and David Howard. 2013. Labor force participation and work
status of people 65 years and older. (2013).

[14] Zhibin Li and Harold Snieder. [n.d.]. Shaoyong Su, Xiuhua Ding, Julian F. Thayer,
Frank A. Treiber, and Xiaoling Wang. 2009.“A Longitudinal Study in Youth of
Heart Rate Variability at Rest and in Response to Stress.”. International Journal of
Psychophysiology 73, 3 ([n. d.]), 212–217.

[15] NEAL Lippman, KENNETH M Stein, and BRUCE B Lerman. 1994. Comparison of
methods for removal of ectopy in measurement of heart rate variability. American
Journal of Physiology-Heart and Circulatory Physiology 267, 1 (1994), H411–H418.

[16] Ulf Lundberg, Roland Kadefors, Bo Melin, Gunnar Palmerud, Peter Hassmén,
Margareta Engström, and Ingela Elfsberg Dohns. 1994. Psychophysiological stress
and EMG activity of the trapezius muscle. International journal of behavioral
medicine 1, 4 (1994), 354–370.

[17] Marek Malik, J Thomas Bigger, A John Camm, Robert E Kleiger, Alberto Malliani,
Arthur J Moss, and Peter J Schwartz. 1996. Heart rate variability: Standards
of measurement, physiological interpretation, and clinical use. European heart
journal 17, 3 (1996), 354–381.

[18] World Health Organization. 2016. World health statistics 2016: monitoring health
for the SDGs sustainable development goals. (2016).

[19] Y-S Park and S Lek. 2016. Artificial Neural Networks: Multilayer Perceptron
for Ecological Modeling. In Developments in environmental modelling. Vol. 28.
Elsevier, 123–140.

[20] Mirja Peltola. 2012. Role of editing of RR intervals in the analysis of heart rate
variability. Frontiers in physiology 3 (2012), 148.

[21] Mohammad Pourhomayoun, Nabil Alshurafa, Bobak Mortazavi, Hassan
Ghasemzadeh, Konstantinos Sideris, Bahman Sadeghi, Michael Ong, Lorraine
Evangelista, Patrick Romano, Andrew Auerbach, et al. 2014. Multiple model
analytics for adverse event prediction in remote health monitoring systems. In
2014 IEEE Healthcare Innovation Conference (HIC). IEEE, 106–110.

[22] Lizawati Salahuddin, Jaegeol Cho, Myeong Gi Jeong, and Desok Kim. 2007. Ultra
short term analysis of heart rate variability for monitoring mental stress in mobile
settings. In 2007 29th annual international conference of the ieee engineering in
medicine and biology society. IEEE, 4656–4659.

[23] Claude Sammut and Geoffrey I Webb. 2011. Encyclopedia of machine learning.
Springer Science & Business Media.

[24] Anne-Louise Smith, Harry Owen, and Karen J Reynolds. 2013. Heart rate vari-
ability indices for very short-term (30 beat) analysis. Part 1: survey and toolbox.
Journal of clinical monitoring and computing 27, 5 (2013), 569–576.

[25] Kai Ming Ting. 2010. Precision and Recall. Encyclopedia of machine learning 781
(2010).

[26] Joaquin Vanschoren. 2019. Meta-learning. In Automated Machine Learning.
Springer, Cham, 35–61.

[27] Andreas Voss, Rico Schroeder, Andreas Heitmann, Annette Peters, and Siegfried
Perz. 2015. Short-term heart rate variability—influence of gender and age in
healthy subjects. PloS one 10, 3 (2015), e0118308.

[28] W West, A Hicks, L Clements, and J Dowling. 1995. The relationship between
voluntary electromyogram, endurance time and intensity of effort in isometric
handgrip exercise. European journal of applied physiology and occupational
physiology 71, 4 (1995), 301–305.

[29] Ada H Zohar, C Robert Cloninger, Rollin McCraty, et al. 2013. Personality and
heart rate variability: exploring pathways from personality to cardiac coherence
and health. Open Journal of Social Sciences 1, 06 (2013), 32.

248


	Abstract
	1 Introduction
	2 DATA COLLECTION
	3 METHODS
	3.1 Data Segmentation
	3.2 Data Preprocessing
	3.3 Feature Extraction
	3.4 Feature Selection 
	3.5 Optimized ANN for Mental Stress Classification During a Motor Task. 
	3.6 ANN Evaluation

	4 RESULTS
	5 Discussion
	6 Conclusion
	References

