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Abstract—Vigilance is a primary job-performance requirement
for human operators in domains that demand sustained attention,
including air traffic control (ATC), surveillance, emergency
response and many others. In this pilot study we introduce the
prerequisites and conditions that facilitate a novel closed-loop,
adaptive neurostimulation system to alleviate vigilance decre-
ments during prolonged time-on-task efforts. Here, we investigate
the use of transcranial Direct Current Stimulation (tDCS) with
preset stimulation parameters – intensity (I), duration (t), and,
probe location to augment the operators’ vigilance state during
an under-arousing task. To this end, we employ an app-based
psychomotor-vigilance test (PVT), where performance metrics
are analyzed along with physiological and cognitive bio-markers
to explore opportunities toward a predictive framework. Initial
observations (N = 19) suggest that – (1) a prolonged version
of the PVT (40 min.) can function both as a diagnostic and
an inductive mechanism for vigilance loss, (2) tDCS can serve
to restore/ improve operator vigilance states relative to baseline
performance levels, and (3) short-term heart rate variability
(HR/V) features (3 min.) and the fNIRS signal are sensitive to
state changes during the PVT, and to the effects of stimulation.

Index Terms—tDCS, neuromodulation, fNIRS, heart rate vari-
ability

I. INTRODUCTION

Vigilance in operators within safety-critical socio-technical
systems is a primary job performance requirement [1]. With
increasing time-on-task demands, operator cognitive states are
compromised as vigilance decrements begin [2]. There are
varied definitions for vigilance, and the associated diminution,
but there is some precision in characterizing it as the ability
to sustain attention for an extended duration of time while
maintaining optimal task performance. Therefore, contingent
on the nature of the task, the observed decrease in attention
state over a given time period is ascribed to vigilance loss [3],
[4]. The consequence of vigilance decrements within these
systems is not trivial, with operator lapses or error identified
as a contributor to several well-researched case studies for
example, Three Mile island, and Chernobyl [5]. Some studies
attribute their cause to sleep deprivation, monotony, and (or)
boredom [6], while others explore underlying cognitive factors
that prime these states [7]. The ability to predict the onset of
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vigilance loss, and to compliment the user’s cognitive deficits
through intervention remains an active research effort [8]–[10].

Studies have identified theoretical models, and measures for
the quantitative, and qualitative estimation of vigilance in hu-
man operators. These include the arousal theory which posits
cortical arousal as a causal indicator for vigilance performance.
Successive investigations with functional magnetic resonance
imaging (fMRI), and electroencephalography (EEG) suggest
that vigilance is correlated with cortical arousal however the
causal relationship remains suspect [11], [12]. In contrast, the
underload theory suggests that vigilance loss is due to the
observer’s withdrawal of focused attention to a task due to
task monotony [13], and it is this perspective that informs our
current direction.

The underlying neural basis for vigilance, and vigilance
states is an important consideration in this investigation, and
it is a complex issue. There are multiple constructs and neural
systems elementary to the relatively non-specific alertness and
activation states associated with vigilance, implying that the
phenomenon is not uni-dimensional [14]. Some attempts have
been made on using EEG workload indices as predictors for
monitoring vigilance states, with the measured Task Load
Index, and Engagement Index from lower-frequency alpha
as an objective diagnostic measure for operator vigilance
loss [15]. However, this and related metrics need further
investigation on the variability associated with altering task
demands. fMRI studies report that attentional performance is
correlated with BOLD-signals especially in the parietal and
pre-frontal cortices [16], [17], nevertheless, these methods are
not optimized for everyday use-cases. Another study reports
the responsiveness of cerebral hemodynamics to operator
fatigue, and vigilance states using near-infrared spectroscropy
(NIRS) [18] – this non-invasive ambulatory technique shows
promise in providing correlates for vigilance decrement but
is limited by its spatio-temporal resolution, and operating
constraints [19]. On the subject of deficit prediction, there is
also emphasis on the need for wearables that are unobtrusive
to task performance requirements, while remaining sensitive to
the physiological, and cognitive triggers that capture operator
lapses. For the systems discussed thus far, this remains an
impediment, however, recent efforts suggest that HR/V is a
sensitive metric for predicting the cognitive demands of sus-



tained attention tasks [20], in particular, spectral power ratios,
time-domain, and some non-linear parameters derived from
the inter-beat interval (IBI). These metrics can be obtained
using electrocadiography (ECG) enabled wearables that are
easy-to-use, inconspicuous, and self-contained.

With the onset of vigilance decrements there is the need
to sustainably reverse or otherwise delay the condition using
some active, adaptive mechanism. Research in this space
dwells on the use of both conventional and unconventional
solutions. Conventional paradigms include – meditation, yoga,
caffeine, and nicotine among others; with each showing
varying levels of success, and some inherently limited by
their mechanism of action [10]. Unconventional solutions
include pharmacological agents such as D-Amphetamine, and
Modafinil among others, with each having unique pharmaco-
dynamics, activations, and long-term addiction potentials [21].
Some of these modalities are used on a spontaneous, ad-hoc
basis, with no clear statistical validation of their efficacy (e.g.,
coffee in the workplace). Moreover, there is a need for tools
that can act prior to symptomatic expression, and also those
that are mapped to the operator’s ”real-time” cognitive state.

Neuromodulation techniques that use non-invasive mech-
anisms show promise in enabling some form of preemptive
action, and in eliciting the desired response. In particular,
the use of transcranial direct current stimulation (tDCS) has
been explored by multiple research groups [22], [23]. In these
studies, a small current (1 to 2 mA) is applied to the user’s
scalp for a short duration of time (up to 40 min.). These small
currents are stated to influence levels of cortical excitability,
thereby altering user vigilance states. Research by Nelson et
al. showed promise in vigilance enhancement via tDCS when
administered over the dorsolateral prefrontal cortex (dlPFC),
while performing a simulated air traffic control task [9].
Similar findings have been reported with participants subject
to a psycho-motor vigilance Test (PVT), and the Mackworth
clock test [24].

For the scope of this investigation, we explore a closed-
loop, adaptive approach to tDCS administration. In the studies
prior, including those related to vigilance, and those in other
applications, tDCS dosages were based on arbitrary, sequential
time-intervals with non-specific relationships to user cognitive
states [9], [24]. In this study, we investigate the pre-requisites
for a system that is explicitly, and concurrently informed by
physiological triggers/ thresholds that determine the onset of
vigilance loss. There are several unknowns relevant to this
proposition, and this pilot study aims to disambiguate some
among them – (1) the characteristics of vigilance decrements,
and its representation within PVT performance-metrics across
individuals, (2) the correlation between traditional HR/V fea-
tures, the fNIRS signal and operator vigilance state, (3) the
predictive-potential for HR/V as a sufficient measure to infer
operator vigilance trends, and (4) the effects of tDCS on
restoring/ augmenting operator task performance levels relative
to baseline.

This paper is organized into the following sections – Section
II provides an overview of our data collection methodology,

Fig. 1. A block diagrammatic representation of the proposed closed-loop
system. The internal feedback loop (dashed, green) consists of the visual
pathway, and is mediated by the occipital cortex of the brain. The external
feedback loop (solid, red) is mediated by a prediction algorithm informed by
operator physiological/ cognitive states, and provides electrical stimulation
to the dorsolateral prefrontal cortex (dlPFC). A binary decision variable
determines the activation of this neuromodulation (tDCS) system.

analysis techniques, and proposed system architecture. In
Section III we present our observations, and discuss their
significance within the context of the proposed closed-loop
system, and current literature. Finally, in Section IV we con-
clude with a discussion of the relevance of this effort within the
current body of literature, foreseeable limitations, and future
directions.

II. METHODS

A. Overview

The overall system’s architecture is represented by the
graphic in Fig. 1. Human-visual-information processing, as
it relates to the PVT, relies on an internal feedback loop
(dashed, green). This feedback loop is mediated by the visual
system which receives cues (visual stimuli) from the interface,
and commands action via the occipital, and posterior parietal
cortices – a button-press event [25]. This interaction influences
task-performance metrics, and is underscored by operator
vigilance state. The PVT however is an under-arousing task,
that elicits minimal cognitive activity [26], therefore, with ex-
tended time-on-task, there is an expected performance decline
attributed to vigilance decrements arising from monotony, and
boredom. Further, our hypothesis relies on the evidence that
the markers for vigilance state are captured within HR/V and
fNIRS metrics. Together with weighted performance mea-
sures, these neurophysiological indices inform a prediction
algorithm that can determine the onset of vigilance loss
(tonset). Which then enables the secondary, external feedback
loop (solid, red), that relies on a binary decision variable
from the prediction algorithm to administer tDCS with preset
stimulation parameters (intensity, I and probe position). For
the scope of this investigation, we independently analyze –
(1) performance decline associated with the PVT, (2) HR/V
features as prediction metrics for vigilance decline, (3) the
efficacy of tDCS in improving task performance levels, and
(4) the role of cognitive biomarkers during stimulation.



Fig. 2. (a) A schematic representation of the participant engaging with the PVT interface while under the reversed tDCS condition, i.e. anode at the left-
dlPFC, and cathode at the right-SO regions respectively. Physiological data is monitored by the chest-worn, two-lead ECG device, and the research-grade
smartwatch. A custom hardware interface transfers activation commands from the prediction algorithm to the tDCS device. (b) The 10-20 international system
representing the electrode montage for the reversed stimulation condition, with anode at FP2, and cathode at the F3 positions. (c) fNIRS probe map for the
tDCS experiments showing source (red), detector (blue) and channel positions over the regions of interest. (d) Schematic representation of the processing
pipeline for extracting temporal features from the fNIRS signal.

B. The onset of vigilance decrements

For phase one, we had participants (N = 19; 18 − 30
age group) engage with a computer-based, custom, PVT
application, while monitoring their physiological indices. An
important distinction in this study is that the PVT is used both
as a tool to induce vigilance decrements (with extended dura-
tion of task exposure), and as a diagnostic tool to evaluate user
cognitive state, the motivation for this is to use an interface that
is standardized, and analogous to other metrics for vigilance/
cognitive impairment (E.g. blood alcohol content). The PVT
entails users responding to objects (circles, and crosses) that
are randomly sequenced to appear on screen, with a button-
press (see schematic in Fig. 2 (a)). The users are instructed to
press the button only on seeing a circle, and to do so as soon as
they can. The inter-stimulus interval (ISI) is randomized, with
a screen refresh loop running every three seconds (i.e. min.
ISI = 3s), the stimuli objects are probabilistically sampled
with unequal weights (Pcirc = 0.4, Pcross = 0.2, Pnull = 0.4)
from a random distribution. This experiment lasted a duration
of 40 min.. The application reports user-response time, re-
sponse correctness, and lapses as metrics that relate to their
vigilance state, where response time is defined as the time
between stimulus projection, and user key-press events. A
correct response is when the user responds to a circle object
or disregards a non-circle object, and a lapse is any key-press
event that occurs beyond 500ms since stimulus display [26].

In addition to task performance metrics, we monitored the
participant’s physiological response using a wearable ECG
device (Actiheart 4, CamNtech Ltd., Cambridgeshire, UK),
and a research-grade smart-watch (Empatica E4, Empatica
Inc., Boston, MA). The goal of this model building exercise
is to find correlation between HR/V indices, and reported task

metrics, that could identify the onset of vigilance decrements.
1) Measured physiological indices: The ECG data is cap-

tured continuously during the experiment at a sampling rate
of 128 Hz. The embedded hardware estimates the Inter-beat
Interval (IBI) with a temporal resolution of approximately
±1ms. Heart Rate (HR) is measured internally as an average
of the last 16 valid IBI measures. The raw ECG signal is
filtered for motion artifacts using the accelerometer on the
device, and normalized for measured HR. The automated
experiment protocol provides event markers that determine the
start and finish of the PVT. Of the indices that define HR/V
characteristics, we are interested in those that are congruent
with the goal of reducing latency in the overall system’s re-
sponse to operator physiological state. Prior research on ECG
in vigilance tasks report the use of conventional spectral pa-
rameters [27], [28], including the RR-interval, spectral power
across frequency regimes: very-low (VLF), low (LF), and high
(HF), i.e. 6 0.04Hz, 0.04 − 0.15Hz, and 0.15 − 0.40Hz
respectively, normalized LF and HF power, and the ratio of
LF to HF power. Our preliminary analysis relies on similar
primitives, including time-/frequency-domain, and non-linear
parameters (see Fig. 3 (b)).

2) Correlations between HR/V and performance: Heart rate
and its variability are complex, non-linear phenomena. The
variability of this chaotic system allows individuals to adapt
to changing environments/ task-demands [29]. For example,
higher levels of resting vagally-mediated HR/V are linked to
attention and emotional processing by the prefrontal cortex,
while, afferent information processing can modulate frontocor-
tical activity and impact higher-level functions [30]. Therefore,
given that regulators of the cardiovascular system interact in
a non-linear way, HR/V analysis using non-linear methods
would best predict or reflect these mechanisms. Previous



studies that focus on prediction with HR/V have relied on
testing the strength of a linear relationship between each HR/V
parameter and the performance metric [27], fuzzy clustering
[28], and feature extraction methods. For this investigation
we use a combination of 34 time/ frequency-domain, and
non-linear features of the HR/V signal [29]. The autonomic
control of HR/V fits the classical description of a non-
linear, dynamical/ chaotic system, however the overarching
goals for this project necessitate simplistic architectures or
algorithms that are functional, and compatible with the online
frameworks. The threshold to determine the time-of-onset
(tonset) of vigilance decrements rely on existing literature, and
observations during the pilot data collection effort.

C. Evaluation of the closed-loop system

The second phase of this investigation is centered on
evaluating the efficacy of tDCS in augmenting or restoring
task performance levels relative to the participant’s baseline.
Here participants (N = 3) engage with the PVT interface
described in the preceding section, while their physiological,
cognitive, and performance data are logged during multiple
sessions (15 sessions in total). The tDCS platform (1 × 1
tDCS system, Soterix Medical, NY, NY) with presets (current
intensity, 1mA, and probe position), as represented in Fig.
2 (a) is enabled during the course of the experiment during
a pre-determined time instant. Prior research on vigilance
enhancement with tDCS has explored the role of the frontal
cortex in mediating attentional states, in particular the dlPFC
region was identified as a potential candidate for anodal
stimulation [9], we adopt a similar arrangement in this pilot
study with the reference electrode over the right supra-orbital
(r-SO) region.

Participants in this second phase engage with the PVT inter-
face over five sessions – active (anodal), reversed (cathodal),
sham (anodal), pre-stimulation (anodal) or null (no stimula-
tion) spread across multiple days. During active stimulation,
the anode is placed over the left dlPFC (electrode center over
F3 on the 10–20 system), and the cathode over the right supra-
orbital (electrode center over FP2 on the 10-20 system) region,
under the reversed conditions, the anode was placed over the
left dlPFC and the cathode right supra-orbitally (shown in Fig
2 (c)). During sham, the active electrode positions will be
retained, however the stimulation waveform will have a brief
(30s) up-ramp to set point (1mA), a plateau at set point for
15 s and a subsequent down-ramp to 0mA, which is retained
for the rest of the experiment duration. Under pre-stimulation,
the anodal electrode positions are retained, but stimulation
is provided prior to the start of experiment for a duration
of 5 min.. During the no stimulation condition, participants
wear the required peripherals, but no tDCS is provided. In
addition to ECG, participants (N = 1) wear an fNIRS device
(NIRSport2, NIRx Medical Technologies, LLC, Los Angeles,
CA) during the stimulation experiment to better understand the
neural basis for vigilance changes across the five experiment
conditions.

1) fNIRS processing stream: The fNIRS data is acquired us-
ing the NIRSport device, a modified probe-map was designed
to accommodate the concurrent use of the fNIRS system along
with the tDCS sponge electrodes (see Fig. 2 (c)). The probe-
map was optimized to focus on the active region of interest
for the vigilance task i.e. the l-dlPFC. There were a total
of 12 channels with 6 sources, and 6 detectors respectively.
The fNIRS data was acquired at a frequency of 10Hz. The
processing pipeline employs the Homer2 software tool to
convert the raw intensity data from the NIRS device into a
differential optical density measure, from thereon the modified
Beer-Lambert is applied to obtain changes in haemoglobin
concentration relative to baseline (dConc), which provides
information related to brain activity within the region of
interest [31]. Further, this signal is de-trended to account for
sensor drift, filtered to correct for motion artifacts, and band-
pass filtered for instrumental and physiological noise. The
time series change in concentration (dConc) for each signal
(HbO/T/R) is then imported into a post-processing script for
subsequent analysis.

The experiment protocol includes a 5 min. baseline prior
to the start of the PVT, the dConc data is partitioned into
five phases post baseline – early, pre, mid/stim, post, and late
with each phase broken into two sections e.g., E1 and E2
for the early stage. Given that the PVT entails randomized
stimulus events these partitions where chosen in such a way to
ensure an equitable distribution of response events within each
phase. With this constraint, each phase entailed roughly 50
response events over a period of 4 min.. For the fNIRS signal,
we use epoch-peaks (pi) averaged over the entire phase as a
representative measure for that interval (x̄ph). Here the epoch
size was defined as 15s which is consistent with the latency
of hemodynamics in the human brain [32]. The stimulus time
stamps were used to slice the phase interval into smaller 15 s
epochs (n) where each epoch constitutes at least one unique
stimulus event, care was taken to ensure that no interval had
overlapping stimulus events (see Fig. 2 (d)).

x̄ph =

∑n
i=1 pi
n

(1)

Since the fNIRS signal measures relative change in concen-
tration, the representative statistic for each phase is cumulative
such that for k phases, the kth phase has an amplitude as given
by the below expression,

[x̄ph]k = [x̄ph]k + [x̄ph]k−1 (2)

III. OBSERVATIONS AND DISCUSSION

A. Vigilance decrements with time-on-task

In Phase-1 upon consent, we had 19 participants under-
take the PVT while their physiological indices (HRV) and
performance was monitored as described in Section II-B. The
response delay as a function of time across all participants
is reported in Fig. 3 (a). The dashed trend-line shows the
average performance profile in the form of a regularized cubic
spline, while the scatter plot represents the epoch-averages



Fig. 3. (a) PVT response times across all participants (N = 19) during Phase-1. The dashed line represents a regularized cubic spline fit to the epoch-averages
of response time across all participants. The super-imposed bar graph represents the changes in response time over four stages consistent with Phase 2 – early
(E), pre (PR), mid (M), and late (L), along with the standard deviations for each segment. (b) Short-term (3 min.), time-domain, spectral, and nonlinear
HR/V features for the proposed algorithm, normalized and derived from a 30 min. PVT on a single participant. Feature trend is shown in dashed lines,
performance trend represented by the solid line. The raw HR/V data was filtered for outliers and ectopic beats. Linear interpolation was used for missing
values. (c) Pearson correlation metrics across all HRV features derived from participant response data.

of response time for all participants. From these observations
it is evident that response delay increases as a function of
time, with more than 80% of the participants sharing this
behavior. However, there were significant baseline differences
in response times, and some subjective variability in response
behavior. Notably, most participants who begin with relatively
good response times (< 400ms) show sharper increases in
response delay until midway, where they plateau or show a
more gentle decay. Those participants who begin with poor
baselines (> 500ms) tend to show no significant change in
response behavior over the entire experiment duration. This
observation is significant in that it highlights the subjective
variability in vigilance decrements and therefore underscores
the need for an adaptive framework.

1) Heart rate variability as a prediction mechanism: From
the response data in Phase-1, we processed the IBI signals to
generate temporal, spectral, and non-linear features that char-
acterize the ECG signal. We adopt a short-term feature epoch
of five minutes resulting in approximately 8 feature samples
for each participant. The IBI signal was filtered for outliers
and ectopic beats, adjusted for motion artifacts, and linearly
interpolated for missing beats [33]. Performance data was
normalized across the whole experiment by participant, while
HR/V features were normalized by epoch. The performance
data is contrasted against the HR/V features for one participant
as shown on the graphic in Fig. 3 (b). At the outset, HR/V as
a predictor is impeded by the recommended epoch window,
and our sample size (N = 19). Our data set was too sparse for
any robust prediction paradigm, while further data collection
is on pause given the global crisis. However, we do notice
that some features appear to show stronger correlations with
performance trends in those participants who begin with better
baseline response times (< 400ms), they are as highlighted
in Fig. 3 (c), we believe that with a larger participant pool
HRV measures could help account for individual variability in

response behaviors, and function as a priming mechanism for
the proposed closed loop system. However, it is our belief that
such a system will have to work in combination with a sensing
modality that has better temporal resolution, and is sensitive
to changes at the point-of-origin of such cognitive responses,
this lead us to investigate the effectiveness of fNIRS as a
sensing mechanism when incorporated along with the tDCS
experiments as reported in the sections to follow.

B. Effects of stimulation on PVT performance

In Phase-2 upon consent, we had participants (N = 3;
15 sessions) engage the PVT interface, while under varying
stimulation conditions, over multiple experiment sessions. The
working hypothesis here borrows from the evidence reported
in Section III-A, where we observed that PVT performance
levels diminish over time, however it is also noted that the
performance trends are subjective and do show some patterns
of variability. Here we hypothesized that tDCS should alter
the vigilance state of the participant, and this can either result
in a return to baseline response times or an improvement in
response time altogether. Across the five experiment condi-
tions, we notice an upward trend in response time (delay) as
a function of the experiment duration. Further, in experiments
that involve a stimulation event (ACT, REV, SHA) we see level
changes (improvements) in performance behaviors across all
participants and these changes appear concomitant with the
stimulus interval (18 − 25 min.). However, the amplitude
of change remains varied across participants and conditions.
Notably the slope of response time decrease during the ACT
condition was the highest across all stimulation events (see
Fig. 4 (a)), with the average response time showing a 16%
decrease from the MID to LATE stages of experiment.

Further, we also notice improved baseline performance
levels for those participants who begin the experiment with
pre-stimulation, with diminished decay in response time as



Fig. 4. (a) Performance trends across the five experiment conditions for participants in Phase-2. The scatter plot represents average response delay (ms) over
180 s intervals, while the dashed line represents a cubic-spline trend line for response delay over the entire experiment. Bar plots represent the response
delay during four experiment stages for all participants i.e. early, pre, stim/mid, and late. The error bars depict individual variability. (b) Topographic montage
depicting changes in peak HbO concentration during different stimulation conditions (see Section II-C1) over four stages of the exeperiment – early (E), pre
(PR), mid/stim (M/DT), and post (PO). The concentration values were feature scaled across all participants, and conditions. The jet colormap is consistent
across each experiment. The bar plots reflect peak averages, and standard deviation of the HbT signal for channels within the region of interest over all
phases of the experiment.

the experiment progresses. These performance trends are
represented on the graphic in Fig. 4 (a), with the dashed
line representing performance trends, while the scatter plots
indicate response-time averages over 180s intervals. The bar
plots in Fig. 4 (a) present the level changes in performance
across the five experiment conditions for all participants, here
the experiment duration is divided into four equal intervals
– early, pre, mid/stim, and late, with the bars representing
interval averages, and whiskers indicating the extent of indi-
vidual variability. These observations suggest that the effect
of tDCS can serve both to restore operator performance state
to baseline levels and also to sustain optimal performance
levels for longer periods of time. A question that arises here is
whether this improvement in performance is merely a transient
return to a state of attention or an underlying improvement
in cognitive ability. The pre-stimulation performance behavior
when contrasted with the null condition suggests that tDCS
can effect changes that are beyond transient effects, an attribute
that we intend to investigate further with a larger sample size.

1) Cognitive bio-markers and vigilance state: The activa-
tion states of the region of interest can indicate vigilance levels
of the participant during an experiment. In Fig. 4 (b) we
present a topographic map of the activation state of regions

within the probe-map as seen in Fig. 2 (c). Here activation
state is represented as the peak HbO value for each phase
as derived through the process discussed in Section II-C1.
Further, the color map represents data that is normalized across
all experiments to ensure a consistent scale. In the topographic
montage we observe a decrease in activation levels as the
participants progress through the phases of the experiment,
this trend appears to be true for all experiment conditions.
However, in experiments that involve an active stimulation
event (ACT, REV, SHA), we observe a return to activation
levels in the phase that follows the stimulation event (PO).
This change appears stronger in the ACT condition than others,
as evident from the color intensity on the projection, a fact that
was also corroborated in the performance behavior reported
earlier. Further, it is also observed that when under pre-
stimulation, the activity decay takes a longer time period than
in the other experiment conditions, suggesting that tDCS prior
to the experiment helps sustain an enhanced vigilance state
for longer time periods. These observations signal positively
toward recruiting a larger participant pool for an expanded test
protocol.



IV. CONCLUSIONS

This investigation explored several foundational questions
related to the human-factors of sustained-attention tasks in
the workplace, and beyond. Vigilance is a primary job-
performance requirement across domains, and vigilance loss
or vigilance decrements remain impediments to human task
performance. The downstream impact of diminished operator
vigilance is non-trivial, and is further amplified within safety-
critical socio-technical systems. The neural, and physiological
signatures of vigilance/ vigilance decrements remain interest-
ing research themes with nuanced approaches and unexplored
regimes. The search for a sufficient, and fieldable predictor for
operator vigilance state is yet to yield satisfactory results, and
as such, it still remains an effort worth pursuing.

Along similar lines, there is the explicit desire for a non-
invasive mechanism to restore operator vigilance state. It
would be further propitious for this system to exhibit speci-
ficity, minimal latency, and no adverse/ long-term reactions
while producing the desired effect. tDCS as a platform may
fulfill some of these requirements, especially within the con-
text defined in this study. Although we approach this problem
with certain optimism we foresee some key limitations to
the overall architecture – (1) physiological indices may prove
insufficient given the desire for real-time response, therefore,
there might be a need to transition toward cognitive indices
sourced from the point-of-origin of neural signals; (2) in
this framework, tDCS parameters are borrowed from existing
literature, but the prior-art reports high variability in outcome
due to the observed task-specificity of both tDCS, and the
choice of sensing modality. Hence, there is need for more
trial-and-error in parameterization; and (3) although the study
proposes the concurrent use of tDCS with HR/V measures,
prior research indicates that tDCS is known to alter autonomic
response thresholds, therefore, the current framework cannot
enable a continuous dose-response mechanism. Importantly,
much of this research effort was hindered by the ongoing
global pandemic, the evidence reported in this study is derived
from as many participants as the study team could recruit
prior to the current crisis, and as such these observations
signal positively, and demand an expanded participant pool
to reaffirm our current direction.

With the above caveats considered, we expect the following
contributions upon the completion of this effort – (1) an
evaluation of PVT in its ability to function both as a diagnostic
tool that provides quantitative metrics for operator vigilance
state, and as an induction mechanism to induce boredom or
underload-related vigilance decrements in human operators –
this is important given the analogues of the PVT to other
standard measures for operator impairment; (2) commentary,
and statistics on whether heart rate and its variability (HR/V)
are sufficient predictors for the onset of vigilance decrements
– wearability and functionality in the target workplace remains
a conflict for most devices today, and if HR/V proves suffi-
cient, direction on how we could extend this toward a task-
agnostic framework; and importantly (3) answers to whether a

closed-loop neurostimulation platform can produce significant
change in task performance abilities, in particular, one that is
concurrent and explicitly informed by relevant predictors.
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