
Visuospatial Working Memory under Fatigue: Observations with Cerebral Hemodynamics and
Heart Rate Variability

Visuospatial working memory (WM) is a central component of human executive function within safety-
critical systems, where the interactions between fatigue due to time-on-task and WM capacity remain
critical yet under-explored dimensions. In this work, we investigate the temporal dynamics of brain
activation, functional connectivity, and heart-rate variability (HRV) during a fatiguing visuospatial two-
back test. We recruited sixteen participants who were subject to this protocol while we captured their
neurophysiological data through near-infrared spectroscopy and HRV. We observed that brain activation in
the pre-frontal cortex (PFC) mirrors performance, where, with the onset of fatigue we found a decrease in
both measures. Functional connectivity strengths were found to decrease between key PFC regions and the
secondary visual cortex suggesting fatigue-induced task disengagement. Further, we explored the validity
of the neurovisceral integration model in explaining HRV changes against brain activation. Together, our
observations support the development of a predictive framework for WM decline.

INTRODUCTION

Working memory (WM) is a neurological process where
the brain temporarily stores and manipulates information
in order to perform cognitive functions such as, learning,
language comprehension, and reasoning (Baddeley, 2000).
The brain relies on a complex network of resources to
facilitate these processes, and associated executive functions
(Owens, Duda, Sweet, & MacKillop, 2018). WM and sus-
tained attention remain a central component to effective job
performance in domains such as emergency response, front-
line medical practice, and air-traffic control, where person-
nel are required to exhibit high levels of comprehension, rea-
soning, and vigilance for extended periods (Causse, Dehais,
& Pastor, 2011). In these safety-critical systems, executive
functions are often compromised by cognitive fatigue due
to lapses in working conditions, the nature of the job, long
work hours or a combination of related factors.

Fatigue induces additional cognitive burden, which can
impair WM and limit our ability to sustain task demands.
For example, physicians when multitasking or interrupted
were prone to misdiagnoses, and when sleep deprived their
error rates increased by more than 15 times the nominal
value (Westbrook, Raban, Walter, & Douglas, 2018). In an-
other example, wildland firefighters were reportedly sleep
deprived by up to 35 hours each week during stretches of
the peak fire season, which severely degrades their situation
awareness and decision-making capabilities (Vincent et al.,
2018). Therefore, the need to study the interplay between
fatigue and WM capacity is not understated.

Previous studies have explored the neural underpin-
nings of WM (Gazzaley, Rissman, & D’esposito, 2004), and
its sensitivity to cognitive fatigue (Marshall, Forstot, Callies,
Peterson, & Schenck, 1997) with varying levels of success.
For example, (Sun et al., 2019) demonstrated that functional
connectivity and causality analyses during a short duration
(less than 10 minutes) n-back test were more informative
of changes in WM performance than other measures. In
another study, (Dehais et al., 2018) found that brain-based
metrics using functional near-infrared spectroscopy (fNIRS)

could successfully classify workload during a working
memory task within a flight training simulator. However,
neuroimaging tools available today remain cumbersome for
most real-world applications.

The neurovisceral integration model (NVIM) proposed
by Thayer et al., provides a framework to juxtapose vagal
activity, prefrontal cortex (PFC) activation, and executive
function (Thayer & Lane, 2000). Vagal activity can serve as a
useful analogue to neural data while relying on unobtrsuive
sensing instruments. Specifically, they provide evidence to
suggest that the primary role of the PFC during a WM task is
in sensory inhibition, where with increased PFC activity we
expect an increase in parasympathetic tone, and therefore
an increase in heart rate variability (HRV) (Thayer, Hansen,
Saus-Rose, & Johnsen, 2009). However, study designs, and
findings remain variable, with conflicting observations on
the relationship between HRV indices and WM demand. For
example, in a recent study, Condy et al. extended the NVIM
to explore comparisons between neural activity and HRV
during a response inhibition task, where they found that
baseline HRV agreed with NVIM expectations, but trends
during active inhibition were mostly inconsistent (Condy,
Friedman, & Gandjbakhche, 2020). This reasserts the need
for further exploration on task-specificity and environmen-
tal demands to assess the relevance of the NVIM franework.
Addressing gaps in this space remains critical towards the
development of robust state estimation methods free from
the practical encumbrances of current neuroimaging tools.

To that end, this study is centered on understanding WM
capacity under the influence of fatigue using neural and
physiological indices. We approach this problem by employ-
ing a protracted version of a visuospatial (VS) two-back test
which demands high WM under constant workload, and
high sustained attention given the time-on-task. The pri-
mary aim was to examine the spatio-temporal dynamics of
neural activity, and the temporal dynamics of physiological
response during this fatiguing VS WM task. A secondary
aim was to compare neurophysiological signal behaviors to
expectations from the NVIM framework. Together, fNIRS



and HRV based indices enable advances toward a robust
predictive framework for recognizing WM deficits in the
wild.

MATERIALS AND METHODS

Experiment

Participants. Sixteen participants were recruited (Age:
25.12± 3.31 years; 8 female) from the local student popula-
tion. Only nine among them produced neural data compat-
ible for subsequent analyses, among who, five were female.
All participants were right-hand dominant, and provided
informed consent before the start of the experiment pro-
tocol. All experimental procedures were approved by the
university’s Institutional Review Board, and proceeded in
accordance with the Ethics Code of the American Psychological
Association.

Protocol. Upon informed consent, participants were
equipped with relevant bio-instruments and responded to
questionnaires on their demographics, sleepiness (Karolin-
ska Sleepiness Scale, (Kaida et al., 2006)) and mood (Profile
of mood states, (Shacham, 1983)). Participants were then
instructed to rest for five minutes with their eyes closed
in a seated position to capture a baseline across all sensing
instruments. They were then introduced to the VS WM task
which included a training period followed by the actual
experiments. The task consisted of 12 blocks, with each
block lasting a duration of five minutes. Between blocks
participants responded to single-element questionnaires on
their fatigue, effort, and discomfort. On completing the 12
block protocol participants again responded to subjective
sleepiness and mood assessments. The complete protocol is
shown in Fig. 1 (a).

Visuospatial working memory task. The WM task employed
in this study was a VS two-back test. The task was presented
on a static web page where participants tracked a green
circle within a 3 × 3 grid. The circle would appear in
different sections of the grid; if the first position of the
circle matched the one from two steps ago, then participants
would respond with a key-press. The inter-stimulus time
was 1000ms, and the image persistence time was 900ms.
The match probability was set to 0.5, where the interface
provided a fixed, temporally randomized number of match
events in each block (N = 94; see Fig. 1(b)). Before partici-
pants began the experiment, they were allowed to practice
the two-back task under a training mode. The training
interface provided feedback on response correctness and
response time. During the experiment, this feedback was
withheld from participants. The interface recorded every
key-press or lapse event on the task with time stamps
and a response correctness flag (hit, miss or false-alarm).
For subsequent discussions in this article, the performance
measure used was the overall accuracy on the task.

Bioinstruments. Participants wore a continuous wave
functional near-infrared spectroscopy (fNIRS) device (NIR-
Sport2, NIRx Medical Technologies LLC, USA). Cortical
hemodynamics was obtained using the fNIRS device at
50Hz. Near infrared spectra were captured at two wave-
lengths (λ = 760 & 850nm). There were a total of 16 infrared

Fig. 1. (a) Schematic representation of the experiment protocol and
timeline. (b) Representation of a two-back match event when the user is
expected to respond with a key-press.

Fig. 2. Schematic representation of the probe-map used for neuroimag-
ing via functional near-infrared spectroscopy (fNIRS). The probe-map
consisted of eleven regions of interest derived from the 10-20 EEG
system, here the red circles represent IR sources, and the blue circles
depict the IR detectors.

(IR) sources and 16 IR detectors that characterized blood dis-
tribution about the brain across 46 channels. Channels were
focused on 11 regions: anterior prefrontal cortex (APFC),
medial dorsolateral PFC (MDLPFC), right (R) DLPFC, left
(L) DLPFC, intermediate frontal cortex (IFC), right Broca’s
area (RBA), left Broca’s area (LBA), premotor cortex (PMC),
supplementary motor area (SMA), secondary and tertiary
visual cortex (V2-V3), and the primary visual cortex (V1;
see complete probe-map in Fig. 2). In addition to the fNIRS
device, participants were instrumented with an electrocar-
diography (ECG) device (Actiheart 4, CamNTech, Inc., UK)
that was used to collect ECG data at 128Hz. Electrodes were
placed at the base of the sternum and just beneath the left



Fig. 3. (a) Peak activation across the 11 brain regions are shown in the form of line graphs with S.E.M at each time-point. Results from the one-way
RMANOVA revealed a significant effect of time in eight out of eleven regions. (b) Functional connectivity (FC) differences across each time point. The
graphic presents the the normalized mean z-score of FC by ROI across all participants at each time point. Pairwise t-tests revealed significant differences
in FC across LDPFC-RDPFC regions across phases I-IV, and I-V. Similar differences were observed across the LDPFC and V2-V3 regions.

pectoralis minor muscle.

Pre-processing and feature extraction
fNIRS. Light intensity recorded from the fNIRS device

was first converted to optical density. The optical density
signal was low-pass filtered to attenuate high frequency
noise. Motion artifacts were removed through peak detec-
tion and spline interpolation. The smoothed signals were
band-pass filtered to reduce the effect of slow wave drifts
and physiological noise in the data. Lastly, the change in
oxygenated, deoxygenated, and total hemoglobin concen-
tration (∆HbO/R/T) was derived using the modified Beer-
Lambert principle with a processing stream consistent with
(Nuamah, Mantooth, Karthikeyan, Mehta, & Ryu, 2019). For
the scope of the analyses presented in this article we relied
on the ∆HbO data which was used to derive channel-wise
functional connectivity (FC) metrics and peak activation.
The raw time-series ∆HbO was sampled with a window
of duration 15s which accommodates the underlying pe-
riodicity of the hemodynamic response. The peak values
and FC measures were derived across each window for sub-
sequent analyses. For FC measures we relied on Pearson’s
correlation coefficients that were transformed using Fisher’s
method (Rhee & Mehta, 2018).

Heart rate variability. The raw ECG signal was filtered for
motion-related artifacts (Strasser, Muma, & Zoubir, 2012),
and corrected for ectopics with polynomial interpolation
(Marked, 1995). Subsequently, a peak detection algorithm
was used to isolate the R peaks from the ECG signal (Li,
Zheng, & Tai, 1995). The time between successive R-R peaks,
i.e. the inter-beat-interval (XIBI ) or normal-to-normal (NN)
interval was then derived from the processed peak sig-
nals. We derived four representative statistics for statistical
analyses, two in the time domain (standard deviation of

NN interval (sdnn), and root mean squared of successive
differences (rmssd)), and two in the frequency domain
(low-frequency (lf ) and high frequency (hf ) power), these
features were chosen given prior evidence of their relevance
within the NVIM.

Statistical analysis
Blocking. The fNIRS data, HR/V features, and perfor-

mance measure were blocked into five phases – I, II, III, IV,
and V; where each variable was characterized by its block
mean. Each phase consisted of two experiment blocks for
phase I to IV, while phase V was made up of three blocks.
Each block lasted a duration of five minutes, with ≈ 30s of
transition time between them, where participants respond to
a single-element subjective questionnaire. The last block (no.
12) was dropped from our analyses due to a self-reported
anticipatory effect for experiment completion.

Methods. The performance measure was not normally
distributed, therefore we relied on the Friedman’s test, a
non-parametric equivalent to the one-way repeated mea-
sures analysis of variance (ANOVA) to assess the main
effect of time. Kendall’s W was used as an estimate for
effect size on the Friedman’s test, with Wilcoxon signed-
rank tests for post-hoc analyses. On the fNIRS data, a one-
way repeated measures ANOVA was applied to assess the
main effect of time (five phases) on peak activation for each
region. Multiple pairwise paired t-tests were used to assess
the significance between the levels of the within subjects
factor (time). Functional connectivity data was subject to
simple paired t-tests to identify significantly different FC
pairs across each time point. HR/V measures were blocked
similar to FC and peak activation data, and subject to a
one-way repeated measures ANOVA. Bonferroni adjusted p-
values were used as a threshold to determine significance



Fig. 4. (a) Results from the one-way repeated measures ANOVA on the HR/V features. A significant effect of time was observed across all measures with
a small to moderate effect size. (i) Time domain features – RMSSD, and SDNN. (ii) Frequency domain features – spectral power densities in the LF and
HF regimes. (b) Results from the non-parametric Friedman’s test for the overall performance accuracy across the five phases.

where relevant. For purposes of clarity, data in the figures
are illustrated using standard error of the mean (S.E.M.)

RESULTS

Peak activation

A significant main effect of time was found on peak
activation across the APFC, LDPFC, MDPFC, RDPFC, RBA,
PMC, IFC, and LBA regions (all p < 0.036, η2g ∈ [0.08 −
0.15]). This significance was not observed for the V1, V2/V3
or SMA regions (all p > 0.075). Fig. 3 (a) presents the peak
activation trends across all regions. Post-hoc, pairwise com-
parisons revealed a consistent pattern of temporal difference
in the APFC, LDPFC, MDPFC, RDPFC, and RBA regions,
where we observe an increase in peak activation going from
phase I to phases II, III, and IV respectively; no significant
differences were seen between phases II, III and IV, and a
decrease in peak activation was observed from phase IV to
V of the experiment. In the LBA, PMC, and IFC regions the
peak differences between the phase I and phases II, III and
IV persisted, but no decrease in activation was observed
going from phase IV to V.

Functional connectivity

Fig. 3 (b) presents the normalized mean z-score of FC
across all region-pairs at each time point. From our analyses
we observe that (i) network-wide FC is positive, and (ii) a
global decrease in functional connectivity is apparent from
phase I to V. Although global changes are visually apparent
for the mean value, given variability in FC response, only a
few region-time point pairs exhibit a statistically significant
decrease in FC values. These were (as highlighted), LDPFC
- RDPFC associations between phase pairs I to IV and I
to V (p = 0.041, 0.032 respectively); and LDPFC - V2/V3
between I to IV and I to V (p = 0.046, 0.036 respectively).

Heart rate variability

A significant main effect of time was found across all
four HRV measures (all p < 0.0001, η2g ∈ [0.08 − 0.13]; Fig.
4 (a)). For the LF measure, post-hoc comparisons revealed
significant differences in the mean values between phase I,
and all other subsequent phases. Notably, we found that

LF power density increases relative to phase I in all other
subsequent phases. A similar increase was found going
from phase II to III; notably this difference is not present
between phases III, IV, and V, where the measure appears
to have plateaued. On HF a significant increase was evident
between phase I and phases II, III, and IV respectively, a
similar increase was also seen between phases IV, and V; no
other pairs were found significant. Across the time domain
features, for SDNN and RMSSD we observed significant
increases across phase pairs I to III, and II to III, while, a
decrease was observed between phase pairs III to IV, and IV
to V respectively.

Performance accuracy

A main effect of time was found on the performance
accuracy metric (p < 0.0001,Kw = 0.21). Post-hoc analyses
revealed a marginal increase in accuracy going from phase
I to phase II, a decrease in accuracy from phase II to phase
III, and a further decrease in accuracy levels from phase IV
to phase V (all p < 0.042).

DISCUSSION

The primary role of the frontal cortex during working
memory tasks such as the one discussed in this study is
towards sensory inhibition, i.e. reducing the influence of
distracting streams of information to retain focus on task
goals. Therefore, an increase in PFC activity would be in-
dicative of the effort employed by the participants in doing
well on the WM task. Clearly, early trends in prefrontal
activity supports this argument, where we saw an increase
in peak activation from phase I until phase IV . Performance
adds more context to this discussion, where we observed
that there is a distinct learning period with improvements
in task performance. This ‘’learning‘’ was characterized by
an increase in overall accuracy from phase I to II which
was concomitant with increases in neural activation. Beyond
phase II, the observations take on an interesting turn, where
we found that performance accuracy plateaus across phases
II, III and IV, while neural activity increased – this is
characteristic of increasing effort and the brain recruiting
additional resources to meet task workload demands, while
performance itself appears to have saturated (Causse, Chua,



Peysakhovich, Del Campo, & Matton, 2017). Moreover, dur-
ing this period we also discovered an increase in neural
activity across regions peripheral to the PFC including, the
IFC, LBA, RBA, and PMC regions, which further supports
the preceding argument. Finally, across phases IV and V, we
observed a decrease in overall accuracy that was mirrored
by a decrease in activity in the LDPFC, a region most often
touted as responsible for WM capacity (Barbey, Koenigs,
& Grafman, 2013). This decrease in LDPFC activation was
accompanied by a plateau in other brain regions, which
leads-in to our discussion on the influence of fatigue on
working memory capacity.

We found that with prolonged time on task, participants
reported greater fatigue and this was associated with di-
minished cognitive capacity to sustain inhibitory control
(i.e., lower accuracies). This was also evident from a global
decrease in peak activation across all PFC regions going
from phase III to phase V. Functional connectivity analyses
found declines in connectivity strengths across two regions,
namely, the LDPFC-RDPFC and the LDPFC-V2/V3 regions.
In particular, the decline in connectivity between LDPFC
and RDPFC highlights the neural underpinnings of the
impact of fatigue on WM and the decline in LDPFC-V2/V3
connectivity supports our hypothesis that, with time-on-
task participants are driven towards (visual) disengagement
under fatiguing conditions (Gazzaley et al., 2004).

The NVIM offers a framework to connect changes in
PFC activation to parasympathetic activity and HRV. We
observed a clear increase in HRV as indexed by RMSSD,
and SDNN from phase I to phase III, this aligns with
the perspective that, as PFC activity increased, heart rate
decreases and in turn we observe an increase in the temporal
characteristics of HRV. This argument is further substan-
tiated by observations in the spectral domain, where we
found that the LF power density mirrors these time-domain
trends. This finding is bolstered by the idea that as PFC
activity (or sensory inhibition) increases, we expect an in-
crease in vagal activity which is empirically associated with
LF power under controlled conditions (Thayer et al., 2009).
These observations are unique and promising, especially
given that temporal dynamics of HRV agree with NVIM-
driven expectations and shadow the neural source while
under fatigue. This is a key piece of the puzzle in our
pursuit of unobtrusive sensing paradigms for robust and
prescient state recognition. For example, the recognition of
working memory deficits in emergency responders may
benefit from technologies that rely on cognitive capacities
that demonstrate such underlying neurophysiological dy-
namics. To that end, future work may need to address
study limitations, such as, (i) expanding the sample size
that supports these observations, (ii) investigating causality
to determine patterns in network connectivity changes, and
(iii) improving the relevance of experimental paradigms
towards applications in emergency response.
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