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Force Sensing Steerable Needle with Articulated Tip and Sensorized Tendons

This study examines a unique tip-force sensing steerable needle, 
composed of a metal tube with laser-machined multi-DOF hinge joints 
near the distal end. Sensor instrumented optical fiber bonded to Kevlar 
tendons (sensorized tendons) actuate these joints. 

Introduction

• We demonstrated the feasibility of an articulate robotic needle, 
where, laser-machined orthogonal hinge joints permit multi-DOF 
tip-motion and inherent working channel, while Kevlar reinforced 
PM-FBG fibers enable local temperature and force-estimation.

• The difference between the strain measured when in air and when 
within phantom, provides an estimate of the reaction force 
component generated by tissue

• The approach of embedding laser machined hinge joints can 
spatially accommodate an inner channel for drug delivery, enabling 
customization, and eliminating the need for micro-assembly.

• Concurrently, the Kevlar reinforced PM-FBG fibers can provide 
means for friction-free haptic feedback through localized force, 
temperature and stiffness estimation.

Conclusions

• We will perform combined insertion and tip actuation tests to reach 
specified targets. An outer multi-lumen tube will guide these tendons, 
keep the pin in place and strengthen the joint against buckling.

• This research is partially supported by 2017 Intuitive Surgical 
Technology Grant.

Future Work and Acknowlegement

Objectives
 Motivation:

• Introducing reliable sensing and means for actuation within 
micro-instruments for robotic surgery remains complex - form factor, 
manufacturability, and sensor-response limit design choices.

Proposition:

• To integrate multiple robotic functions within a single element – Laser 
machined multi-DOF hinge segments on tubes with Sensorized 
actuating tendons.

   Description:
Proof of Concept Experiments

Background

Fig.  2: Spectral response of a single PM-FBG fiber (Left-Top) and cross-section 
(Left-Bottom). Different modes of laser cutting leading to various geometrical 
outcomes (Right)

• Optical sensing: The instantaneous peak separation relates to 
temperature, while their temporal difference is proportional to strain. 
Hence the sensor data is decoupled.

• On-Axis Machining: In this mode of machining, elliptical sections 
are formed away from a circular surface cut. This helps prevent 
hinges from dislocating radially away from the tube axis.

Fabrication and Design of the Prototype
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• A test setup (See Fig. 6) was assembled with the 
instrumented prototype - all four tendons were driven by servo 
motors mounted atop the carriage of a linear slide. 

• This system was used to interface the instrument with 
phantom tissue of varying stiffness. The performance of the 
hinge was contrasted with that of a flexure.

Observation:

Fig. 8 indicates that the proposed hinge-joint needle experiences 
about one-half the tissue reaction force compared to the 
flexure-joint needle for equivalent deflections.  

Fig. 8: Strain and 
measured force for the 
actuated hinge and flexure 
within air and phantoms. 

Fig. 6: Experiment setup (a) two different joint types (hinge 
and flexure) of needles tested. (b) bent joint in air (top) and 
experimental setup (bottom)

Fig. 3: Laser machined prototypes contrasted against the da-Vinci EndoWrist (Left), geometric model for the laser machined hinge segment to 
describe the region of interference, and the laser machining process whose effects can be approximated using a kerf width and a kerf angle.

Fig. 1: Laser-machined 
steerable needle with 
orthogonal hinges for pitch 
and yaw. Polarization 
maintaining fiber Bragg 
gratings fiber (PM-FBG) 
enables force, temperature, 
and tissue stiffness 
estimation.

Fig. 4: Design and prototype of steerable needle. (a) exploded view depicting each segment 
(top), actuation configurations of the orthogonal hinges (Angle >25 deg per hinge) and 
dimensions (middle) and PM-FBG location. (b) various tendon routing methods. (iii) is selected in 
this paper for prototyping.

Results

Fig. 7: Temperature 
independence of the 
PM-FBG fiber.  Stage I – 
Constant temperature 
and incremental load.
Stage II – Constant load 
and increasing temperature

Fig. 5: Schematic depicts the PM-FBG fiber 
reinforced with pre-tensioned Kevlar. 
Equivalently modeled as a composite bar 
under axial tension with Kevlar and optical 
fiber regions separated by an exaggerated 
adhesive layer.

• Shorter tip length, 
improved tendon 
routing, and joint 
stiffness aid the 
performance of the 
laser-machined hinge. 
Tensile load > 40 N.

• Validates the 
temperature 
independent 
force-sensing in 
sensorized tendons.
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