

 Introducing reliable sensing and means for actuation within manufacturability, and sensor-response limit design choices.

actuating tendons.

- Hence the sensor data is decoupled.
- **On-Axis Machining**: In this mode of machining, elliptical sections are formed away from a circular surface cut. This helps prevent hinges from dislocating radially away from the tube axis.

Force Sensing Steerable Needle with Articulated Tip and Sensorized Tendons

Shivanand Pattanshetti, Rohith Karthikeyan and Seok Chang Ryu (scryu@tamu.edu) BioRobotics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX-77843

Fig. 8 indicates that the proposed hinge-joint needle experiences about one-half the tissue reaction force compared to the flexure-joint needle for equivalent deflections.

• Concurrently, the Kevlar reinforced PM-FBG fibers can provide means for friction-free haptic feedback through localized force, temperature and stiffness estimation.

Future Work and Acknowlegement

• We will perform combined insertion and tip actuation tests to reach specified targets. An outer multi-lumen tube will guide these tendons, keep the pin in place and strengthen the joint against buckling.

• This research is partially supported by 2017 Intuitive Surgical Technology Grant.